CBSE Class 11 Mathematics Chapter 8 Binomial Theorem Multiple Choice Questions with Answers. MCQ Class 11 Mathematics Binomial Theorem with Answers was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 11 Mathematics Binomial Theorem MCQs with Answers to know their preparation level.
Students who are searching for NCERT MCQ Questions for Class 11 Mathematics Binomial Theorem with Answers are compiled here to get good practice on all fundamentals. Know your preparation level on MCQ Questions for Class 11 Mathematics with Answers. You can also verify your answers from our provided MCQ Class 11 Mathematics Binomial Theorem with Answers. So, ace up your preparation with MCQ of Chapter 8 Mathematics Objective Questions.
MCQ Class 11 Mathematics Binomial Theorem with Answers - Set - 1
Question 1:
The general term of the expansion (a + b)n is
(a) Tr+1 = nCr × ar × br
(b) Tr+1 = nCr × ar × bn-r
(c) Tr+1 = nCr × an-r × bn-r
(d) Tr+1 = nCr × an-r × br
Correct Answer – (D)
The general term of the expansion (a + b)n is
Tr+1 = nCr × an-r × br
Question 2 :
The value of n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively is
(a) 2
(b) 4
(c) 6
(d) 8
Correct Answer – (C)
Given that the first three terms of the expansion are 729, 7290 and 30375 respectively.
Now T1 = nC0 × an-0 × b0 = 729
⇒ an = 729 ……………. 1
T2 = nC1 × an-1 × b1 = 7290
⇒ n
an-1 × b = 7290 ……. 2
T3 = nC2 × an-2 × b² = 30375
⇒ {n(n-1)/2}
an-2 × b² = 30375 ……. 3
Now equation 2/equation 1
n
an-1 × b/an = 7290/729
⇒ n×b/n = 10 ……. 4
Now equation 3/equation 2
{n(n-1)/2}
an-2 × b² /n
an-1 × b = 30375/7290
⇒ b(n-1)/2a = 30375/7290
⇒ b(n-1)/a = (30375×2)/7290
⇒ bn/a – b/a = 60750/7290
⇒ 10 – b/a = 6075/729 (60750 and 7290 is divided by 10)
⇒ 10 – b/a = 25/3 (6075 and 729 is divided by 243)
⇒ 10 – 25/3 = b/a
⇒ (30-25)/3 = b/a
⇒ 5/3 = b/a
⇒ b/a = 5/3 …………….. 5
Put this value in equation 4, we get
n × 5/3 = 10
⇒ 5n = 30
⇒ n = 30/5
⇒ n = 6
So, the value of n is 6
Question 3 :
The greatest coefficient in the expansion of (1 + x)10 is
(a) 10!/(5!)
(b) 10!/(5!)²
(c) 10!/(5! × 4!)²
(d) 10!/(5! × 4!)
Correct Answer – (B)
The coefficient of xr in the expansion of (1 + x)10 is 10Cr and 10Cr is maximum for
r = 10/ = 5
Hence, the greatest coefficient = 10C5
= 10!/(5!)²
Question 4 :
If n is a positive integer, then (√3+1)2n+1 + (√3−1)2n+1 is
(a) an even positive integer
(b) a rational number
(c) an odd positive integer
(d) an irrational number
Correct Answer – (D)
Since n is a positive integer, assume n = 1
(√3+1)³ + (√3−1)³
= {3√3 + 1 + 3√3(√3 + 1)} + {3√3 – 1 – 3√3(√3 – 1)}
= 3√3 + 1 + 9 + 3√3 + 3√3 – 1 – 9 + 3√3
= 12√3, which is an irrational number.
Question 5 :
(1.1)10000 is _____ 1000
(a) greater than
(b) less than
(c) equal to
(d) None of these
Correct Answer – (A)
Given, (1.1)10000 = (1 + 0.1)10000
10000C0 + 10000C1 × (0.1) + 10000C2 ×(0.1)² + other +ve terms
= 1 + 10000×(0.1) + other +ve terms
= 1 + 1000 + other +ve terms
> 1000
So, (1.1)10000 is greater than 1000
MCQ Class 11 Mathematics Binomial Theorem with Answers
Question 6 :
If α and β are the roots of the equation x² – x + 1 = 0 then the value of α2009 + β2009 is
(a) 0
(b) 1
(c) -1
(d) 10
Correct Answer – (B)
Given, x² – x + 1 = 0
Now, by Shridharacharya formula, we get
x = {1 ± √(1 – 4×1×1) }/2
⇒ x = {1 ± √(1 – 4) }/2
⇒ x = {1 ± √(-3)}/2
⇒ x = {1 ± √(3 × -1)}/2
⇒ x = {1 ± √3 × √-1}/2
⇒ x = {1 ± i√3}/2 {since i = √-1}
⇒ x = {1 + i√3}/2, {–1 – i√3}/2
⇒ x = -{-1 – i√3}/2, -{-1 + i√3}/2
⇒ x = w, w² {since w = {-1 + i√3}/2 and w² = {-1 – i√3}/2 }
Hence, α = -w, β = w²
Again we know that w³ = 1 and 1 + w + w² = 0
Now, α2009 + β2009 = α2007 × α² + β2007 × β²
= (-w)2007 × (-w)² + (-w²)2007 × (-w²)² {since 2007 is multiple of 3}
= -(w)2007 × (w)² – (w²)2007 × (w4)
= -1 × w² – 1 × w³ × w
= -1 × w² – 1 × 1 × w
= -w² – w
= 1 {since 1 + w + w² = 0}
So, α2009 + β2009 = 1
Question 7 :
The coefficient of xn in the expansion of (1 – 2x + 3x² – 4x³ + ……..)-n is
(a) (2n)!/n!
(b) (2n)!/(n!)²
(c) (2n)!/{2×(n!)²}
(d) None of these
Correct Answer – (B)
We have,
(1 – 2x + 3x² – 4x³ + ……..)-n = {(1 + x)-2}-n
= (1 + x)2n
So, the coefficient of xnC3 = 2nCn = (2n)!/(n!)²
Question 8 :
If the third term in the binomial expansion of (1 + x)m is (-1/8)x² then the rational value of m is
(a) 2
(b) 1/2
(c) 3
(d) 4
Correct Answer – (B)
(1 + x)m = 1 + mx + {m(m – 1)/2}x² + ……..
Now, {m(m – 1)/2}x² = (-1/8)x²
⇒ m(m – 1)/2 = -1/8
⇒ 4m² – 4m = -1
⇒ 4m² – 4m + 1 = 0
⇒ (2m – 1)² = 0
⇒ 2m – 1 = 0
⇒ m = 1/2
Question 9 :
The fourth term in the expansion (x – 2y)12 is
(a) -1670 x9 × y³
(b) -7160 x9 × y³
(c) -1760 x9 × y³
(d) -1607 x9 × y³
Correct Answer – (C)
4th term in (x – 2y)12 = T4
= T3+1
= 12C3 (x)12-3 ×(-2y)³
= 12C3 x9 ×(-8y³)
= {(12×11×10)/(3×2×1)} × x9 ×(-8y³)
= -(2×11×10×8) × x9 × y³
= -1760 x9 × y³
Question 10 :
The coefficient of y in the expansion of (y² + c/y)5 is
(a) 10c
(b) 10c²
(c) 10c³
(d) None of these
Correct Answer – (C)
Given, binomial expression is (y² + c/y)5
Now, Tr+1 = 5Cr × (y²)5-r × (c/y)r
= 5Cr × y10-3r × Cr
Now, 10 – 3r = 1
⇒ 3r = 9
⇒ r = 3
So, the coefficient of y = 5C3 × C³ = 10C³
- NCERT Solutions Class 11 Mathematics Binomial Theorem with Answers : Exercise 8.1
- NCERT Solutions Class 11 Mathematics Binomial Theorem with Answers : Exercise 8.2
- NCERT Solutions Class 11 Mathematics Binomial Theorem with Answers : Exercise 8 Misc
- NCERT Solutions Class 11 Mathematics Textbook download