MCQ Class 11 Mathematics Complex Numbers with Answers

CBSE Class 11 Mathematics Chapter 5 Complex Numbers Multiple Choice Questions with Answers. MCQ Class 11 Mathematics Complex Numbers with Answers was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 11 Mathematics Complex Numbers MCQs with Answers to know their preparation level.

Students who are searching for NCERT MCQ Questions for Class 11 Mathematics Complex Numbers with Answers are compiled here to get good practice on all fundamentals. Know your preparation level on MCQ Questions for Class 11 Mathematics with Answers. You can also verify your answers from our provided MCQ Class 11 Mathematics Complex Numbers with Answers. So, ace up your preparation with MCQ of Chapter 5 Mathematics Objective Questions.

MCQ Class 11 Mathematics Complex Numbers with Answers - Set - 1

Question 1: 

The complex numbers sin x + i cos 2x are conjugate to each other for
(a) x = nπ
(b) x = 0
(c) x = (n + 1/2) π
(d) no value of x

Correct Answer – (D)
Hint:
Given complex number = sin x + i cos 2x
Conjugate of this number = sin x – i cos 2x
Now, sin x + i cos 2x = sin x – i cos 2x
⇒ sin x = cos x and sin 2x = cos 2x {comparing real and imaginary part}
⇒ tan x = 1 and tan 2x = 1
Now both of them are not possible for the same value of x.
So, there exist no value of x

Question 2 : 

The value of i-999 is
(a) 1
(b) -1
(c) i
(d) -i

Correct Answer – (C)
Hint:
Given, i-999
= 1/i999
= 1/(i996 × i³)
= 1/{(i4)249 × i3}
= 1/{1249 × i3} {since i4 = 1}
= 1/i3
= i4/i3 {since i4 = 1}
= i
So, i-999 = i

Question 3 : 

The least value of n for which {(1 + i)/(1 – i)}n is real, is
(a) 1
(b) 2
(c) 3
(d) 4

Correct Answer – (B)
Hint:
Given, {(1 + i)/(1 – i)}n
= [{(1 + i) × (1 + i)}/{(1 – i) × (1 + i)}]n
= [{(1 + i)²}/{(1 – i²)}]n
= [(1 + i² + 2i)/{1 – (-1)}]n
= [(1 – 1 + 2i)/{1 + 1}]n
= [2i/2]n
= in
Now, in is real when n = 2 {since i2 = -1 }
So, the least value of n is 2

Question 4 : 

if z lies on |z| = 1, then 2/z lies on
(a) a circle
(b) an ellipse
(c) a straight line
(d) a parabola

Correct Answer – (A)
Hint:
Let w = 2/z
Now, |w| = |2/z|
=> |w| = 2/|z|
=> |w| = 2
This shows that w lies on a circle with center at the origin and radius 2 units.

Question 5 : 

The value of √(-144) is
(a) 12i
(b) -12i
(c) ±12i
(d) None of these

Correct Answer – (A)
Hint:
Given, √(-144) = √{(-1) × 144}
= √(-1) × √(144)
= i × 12 {Since √(-1) = i}
= 12i
So, √(-144) = 12i

MCQ Class 11 Mathematics Complex Numbers with Answer

Question 6 : 

Let z1 and z2 be two roots of the equation z² + az + b = 0, z being complex. Further assume that the origin, z1 and z1 form an equilateral triangle. Then
(a) a² = b
(b) a² = 2b
(c) a² = 3b
(d) a² = 4b

Correct Answer – (C)
Hint:
Given, z1 and z2 be two roots of the equation z² + az + b = 0
Now, z1 + z2 = -a and z1 × z2 = b
Since z1 and z2 and z3 from an equilateral triangle.
⇒ z12 + z22 + z32 = z1 × z2 + z2 × z3 + z1 × z3
⇒ z12+ z22 = z1 × z2 {since z3 = 0}
⇒ (z1 + z2)² – 2z1 × z2 = z1 × z2
⇒ (z1 + z2)² = 2z1 × z2 + z1 × z2
⇒ (z1 + z2)² = 3z1 × z2
⇒ (-a)² = 3b
⇒ a² = 3b

Question 7 : 

Let z be a complex number such that |z| = 4 and arg(z) = 5π/6, then z =
(a) -2√3 + 2i
(b) 2√3 + 2i
(c) 2√3 – 2i
(d) -√3 + i

Correct Answer – (A)
Hint:
Let z = r(cos θ + i × sin θ)
Then r = 4 and θ = 5π/6
So, z = 4(cos 5π/6 + i × sin 5π/6)
⇒ z = 4(-√3/2 + i/2)
⇒ z = -2√3 + 2i

Question 8 : 

If ω is an imaginary cube root of unity, then (1 + ω – ω²)7 equals
(a) 128 ω
(b) -128 ω
(c) 128 ω²
(d) -128 ω²

Correct Answer – (D)
Hint:
Given ω is an imaginary cube root of unity.
So 1 + ω + ω² = 0 and ω³ = 1
Now, (1 + ω – ω²)7 = (-ω² – ω²)7
⇒ (1 + ω – ω2)7 = (-2ω2)7
⇒ (1 + ω – ω2)7 = -128 ω14
⇒ (1 + ω – ω2)7 = -128 ω12 × ω2
⇒ (1 + ω – ω2)7 = -128 (ω3)4 ω2
⇒ (1 + ω – ω2)7 = -128 ω2

Question 9 : 

The value of √(-25) + 3√(-4) + 2√(-9) is
(a) 13i
(b) -13i
(c) 17i
(d) -17i

Correct Answer – (C)
Given, √(-25) + 3√(-4) + 2√(-9)
= √{(-1) × (25)} + 3√{(-1) × 4} + 2√{(-1) × 9}
= √(-1) × √(25) + 3{√(-1) × √4} + 2{√(-1) × √9}
= 5i + 3×2i + 2×3i {since √(-1) = i}
= 5i + 6i + 6i
= 17i
So, √(-25) + 3√(-4) + 2√(-9) = 17i

Question 10 : 

The value of √(-16) is
(a) -4i
(b) 4i
(c) -2i
(d) 2i

Correct Answer – (B)
Hint:
Given, √(-16) = √(16) × √(-1)
= 4i {since i = √(-1) }

MCQ Class 11 Mathematics Complex Numbers with Answer

MCQ Class 11 Mathematics Linear Inequalities with Answers

Related Posts

Leave a Reply