CBSE Class 11 Mathematics Chapter 12 Introduction to Three Dimensional Geometry Multiple Choice Questions with Answers. MCQ Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 11 Mathematics Introduction to Three Dimensional Geometry MCQs with Answers to know their preparation level.
Students who are searching for NCERT MCQ Questions for Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers are compiled here to get good practice on all fundamentals. Know your preparation level on MCQ Questions for Class 11 Mathematics with Answers. You can also verify your answers from our provided MCQ Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers. So, ace up your preparation with MCQ of Chapter 12 Mathematics Objective Questions.
MCQ Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers - Set - 1
Question 1:
If the end points of a diagonal of a square are (1, -2, 3) and (2, -3, 5) then the length of the side of square is
(a) √3 unit
(b) 2√3 unit
(c) 3√3 unit
(d) 4√3 unit
Correct Answer – (A)
Let a is the length of the side of a square.
Given, the diagonal of a square are (1,–2,3) and (2, -3, 5)
Now, length of the diagonal of square = √{(1 – 2)² + (-2 + 3)² + (3 – 5)²}
= √{1 + 1 + 4}
= √6
Again length of the diagonal of square is √2 times the length of side of the square.
⇒ a√2 = √6
⇒ a√2 = √3×√2
⇒ a = √3
So, the length of side of square is √3 unit
Question 2 :
A vector r is equally inclined with the coordinate axes. If the tip of r is in the positive octant and |r| = 6, then r is
(a) 2√3(i – j + k)
(b) 2√3(-i + j + k)
(c) 2√3(i + j – k)
(d) 2√3(i + j + k)
Correct Answer – (D)
Let l, m, n are DCs of r.
Given, l = m = n
⇒ l² + m² + n² = 1
⇒ 3l² = 1
⇒ l² = 1/3
⇒ l = m = n = 1/√3
So, r = |r|(li + mj + nk)
⇒ r = 6(i/√3 + j/√3 + k/√3)
⇒ r = 2√3(i + j + k)
Question 3 :
The equation of the set of point P, the sum of whose distance from A(4, 0, 0) and B(-4, 0, 0) is equal to 10 is
(a) 9x² + 25y² + 25z² + 225 = 0
(b) 9x² + 25y² + 25z² – 225 = 0
(c) 9x² + 25y² – 25z² – 225 = 0
(d) 9x² – 25y² – 25z² – 225 = 0
Correct Answer – (B)
Let the point P is (x, y, z)
Now given that
PA + PB = 10
⇒ √{(x-4)² + y² + z²} + √{(x+4)² + y² + z²} = 10
⇒ √{(x-4)² + y² + z²} = 10 – √{(x+4)² + y² + z²}
Now square both side
[√{(x-4)² + y² + z²}]² = (10)² + [{(x+4)² + y² + z²}]² – 2 ×10×√{(x+4)² + y² + z²}
⇒ {(x-4)² + y² + z²} = 100 + {(x+4)² + y² + z²} – 20×√{(x+4)² + y² + z²}
⇒ x² + 16 – 8x + y² + z² = 100 + x² + 16 + 8x + y² + z² – 20×√{(x+4)² + y² + z²}
⇒ – 8x = 100 + 8x – 20×√{(x+4)² + y² + z²}
⇒ -8x -8x – 100 = – 20×√{(x+4)² + y² + z²}
⇒ -16x -100 = – 20×√{(x+4)² + y² + z²}
⇒ 4x + 25 = 5×√{(x+4)² + y² + z²}
Again square both side,
(4x + 25)² = 25 ×[√{(x+4)² + y² + z²}]²
⇒ 16x² + 625 + 200x = 25×{(x+4)² + y² + z²}
⇒ 16x² + 625 + 200x = 25×(x² + 16 + 8x + y² + z²)
⇒ 16x² + 625 + 200x = 25x² + 400 + 200x + 25y² + 25z²
⇒ 25x² + 400 + 200x + 25y² + 25z² – 16x² – 625 – 200x = 0
⇒ 9x² + 25y² + 25z² – 225 = 0
Question 4 :
The coordinate of foot of perpendicular drawn from the point A(1, 0, 3) to the join of the point B(4, 7, 1) and C(3, 5, 3) are
(a) (5/3, 7/3, 17/3)
(b) (5, 7, 17)
(c) (5/3, -7/3, 17/3)
(d) (5/7, -7/3, -17/3)
Correct Answer – (A)
Let D be the foot of perpendicular and let it divide BC in the ration m : 1
Then the coordinates of D are {(3m + 4)/(m + 1), (5m + 7)/(m + 1), (3m + 1)/(m + 1)}
Now, AD ⊥ BC
⇒ AD . BC = 0
⇒ -(2m + 3) – 2(5m + 7) – 4 = 0
⇒ m = -7/4
So, the coordinate of D are (5/3, 7/3, 17/3)
Question 5 :
The image of the point P(1, 3, 4) in the plane 2x – y + z = 0 is
(a) (-3, 5, 2)
(b) (3, 5, 2)
(c) (3, -5, 2)
(d) (3, 5, -2)
Correct Answer – (A)
Let image of the point P(1, 3, 4) is Q in the given plane.
The equation of the line through P and normal to the given plane is
(x-1)/2 = (y-3)/-1 = (z-4)/1
Since the line passes through Q, so let the coordinate of Q are (2r + 1, -r + 3, r + 4)
Now, the coordinate of the mid-point of PQ is
(r + 1, -r/2 + 3, r/2 + 4)
Now, this point lies in the given plane.
2(r + 1) – (-r/2 + 3) + (r/2 + 4) + 3 = 0
⇒ 2r + 2 + r/2 – 3 + r/2 + 4 + 3 = 0
⇒ 3r + 6 = 0
⇒ r = -2
Hence, the coordinate of Q is (2r + 1, -r + 3, r + 4) = (-4 + 1, 2 + 3, -2 + 4)
= (-3, 5, 2)
MCQ Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers
Question 6 :
The plane 2x – (1 + a)y + 3az = 0 passes through the intersection of the planes
2x – y = 0 and y + 3z = 0
2x – y = 0 and y – 3z = 0
2x + 3z = 0 and y = 0
2x – 3z = 0 and y = 0
Correct Answer – (D)
Given, equation of plane is:
2x – (1 + a)y + 3az = 0
=> (2x – y) + a(-y + 3z) = 0
which is passing through the intersection of the planes
2x – y = 0 and -y + 3z = 0
2x – y = 0 and y – 3z = 0
Question 7 :
The maximum distance between points (3sin θ, 0, 0) and (4cos θ, 0, 0) is
(a) 3
(b) 4
(c) 5
(d) Can not be find
Correct Answer – (C)
Given two points are (3sin θ, 0, 0) and (4cos θ, 0, 0)
Now distance = √{(4cos θ – 3sin θ)² + (0 – 0)² + (0 – 0)²}
⇒ distance = √{(4cos θ – 3sin θ)²}
⇒ distance = 4cos θ – 3sin θ ……………. 1
Now, maximum value of 4cos θ – 3sin θ = √{(4² + (-3)²}
= √(16 + 9)
= √25
= 5
From equation 1, we get
distance = 5
So, the maximum distance between points (3sin θ, 0, 0) and (4cos θ, 0, 0) is 5
Question 8 :
The locus of a point which moves so that the difference of the squares of its distances from two given points is constant, is a
(a) Straight line
(b) Plane
(c) Sphere
(d) None of these
Correct Answer – (B)
Let the position vectors of the given points A and B be a and b respectively and that of the variable point be r.
Now, given that
PA² – PB² = k (constant)
⇒ |AP|² – |BP|² = k
⇒ |r – a|² – |r – b|² = k
⇒ (|r|² + |a|² – 2r.a) – (|r|² + |b|² – 2r.b) = k
⇒ 2r.(b – a) = k + |b|² – |a|²
⇒ r.(b – a) = (k + |b|² – |a|²)/2
⇒ r.(b – a) = C where C = (k + |b|² – |a|²)/2 = constant
So, it represents the equation of a plane.
Question 9 :
Three planes x + y = 0, y + z = 0, and x + z = 0
(a) none of these
(b) meet in a line
(c) meet in a unique point
(d) meet taken two at a time in parallel lines
Correct Answer – (C)
Given, three planes are
x + y = 0 …….. 1
y + z = 0 …….. 2
and x + z = 0 ……… 3
add these planes, we get
2(x + y + z) = 0
⇒ x + y + z = 0 ……… 4
From equation 1
0 + z = 0
⇒ z = 0
From equation 2
x + 0 = 0
⇒ x = 0
From equation 3
y + 0 = 0
⇒ y = 0
So, (x, y, z) = (0, 0, 0)
Hence, the three planes meet in a unique point.
Question 10 :
The cartesian equation of the line is 3x + 1 = 6y – 2 = 1 – z then its direction ratio are
(a) 1/3, 1/6, 1
(b) -1/3, 1/6, 1
(c) 1/3, -1/6, 1
(d) 1/3, 1/6, -1
Correct Answer – (A)
Given 3x + 1 = 6y – 2 = 1 – z
= (3x + 1)/1 = (6y – 2)/1 = (1 – z)/1
= (x + 1/3)/(1/3) = (y – 2/6)/(1/6) = (1 – z)/1
= (x + 1/3)/(1/3) = (y – 1/3)/(1/6) = (1 – z)/1
Now, the direction ratios are: 1/3, 1/6, 1
- NCERT Solutions Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers : Exercise 12.1
- NCERT Solutions Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers : Exercise 12.2
- NCERT Solutions Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers : Exercise 12.3
- NCERT Solutions Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers : Exercise 12 Misc
- NCERT Solutions Class 11 Mathematics Textbook download