CBSE Class 11 Mathematics Chapter 12 Introduction to Three Dimensional Geometry Multiple Choice Questions with Answers. MCQ Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 11 Mathematics Introduction to Three Dimensional Geometry MCQs with Answers to know their preparation level.
Students who are searching for NCERT MCQ Questions for Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers are compiled here to get good practice on all fundamentals. Know your preparation level on MCQ Questions for Class 11 Mathematics with Answers. You can also verify your answers from our provided MCQ Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers. So, ace up your preparation with MCQ of Chapter 12 Mathematics Objective Questions.
MCQ Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers - Set - 2
Question 1:
In a three dimensional space, the equation 3x – 4y = 0 represents
(a) a plane containing Y axis
(b) none of these
(c) a plane containing Z axis
(d) a plane containing X axis
Correct Answer – (C)
Given, equation is 3x – 4y = 0
Here z = 0
So, the given equation 3x – 4y = 0 represents a plane containing Z axis.
Question 2 :
If α, β, γ are the angles made by a half ray of a line respectively with positive directions of X-axis Y-axis and Z-axis, then sin² α + sin² β + sin² γ =
(a) 1
(b) 0
(c) -1
(d) None of these
Correct Answer – (D)
Let l, m, n be the direction cosines of the given vector.
Then, α, β, γ
l = cos α
m = cos β
n = cos γ
Now, l² + m² + n² = 1
⇒ cos² α + cos² β + cos² γ = 1
⇒ 1 – sin² α + 1 – sin² β + 1 – sin² γ = 1
⇒ 3 – sin² α – sin² β – sin² γ = 1
⇒ 3 – 1 = sin² α + sin² β + sin² γ
⇒ sin² α + sin² β + sin² γ = 2
Question 3 :
The image of the point P(1, 3, 4) in the plane 2x – y + z = 0 is
(a) (-3, 5, 2)
(b) (3, 5, 2)
(c) (3, -5, 2)
(d) (3, 5, -2)
Correct Answer – (A)
Let image of the point P(1, 3, 4) is Q in the given plane.
The equation of the line through P and normal to the given plane is
(x-1)/2 = (y-3)/-1 = (z-4)/1
Since the line passes through Q, so let the coordinate of Q are (2r + 1, -r + 3, r + 4)
Now, the coordinate of the mid-point of PQ is
(r + 1, -r/2 + 3, r/2 + 4)
Now, this point lies in the given plane.
2(r + 1) – (-r/2 + 3) + (r/2 + 4) + 3 = 0
⇒ 2r + 2 + r/2 – 3 + r/2 + 4 + 3 = 0
⇒ 3r + 6 = 0
⇒ r = -2
Hence, the coordinate of Q is (2r + 1, -r + 3, r + 4) = (-4 + 1, 2 + 3, -2 + 4)
= (-3, 5, 2)
Question 4 :
A vector r is equally inclined with the coordinate axes. If the tip of r is in the positive octant and |r| = 6, then r is
(a) 2√3(i – j + k)
(b) 2√3(-i + j + k)
(c) 2√3(i + j – k)
(d) 2√3(i + j + k)
Correct Answer – (D)
Question 5 :
The angle between the vectors with direction ratios are 4, -3, 5 and 3, 4, 5 is
(a) π/2
(b) π/3
(c) π/4
(d) π/6
Correct Answer – (B)
Let a is a vector parallel to the vector having direction ratio is 4, -3, 5
⇒ a = 4i – 3j + 5k
Let b is a vector parallel to the vector having direction ratio is 3 ,4, 5
⇒ b = 3i + 4j + 5k
Let θ be the angle between the given vectors.
Now, cos θ = (a . b)/(|a|×|b|)
⇒ cos θ = (12 – 12 + 25)/{√(16 + 9 + 25)×√(9 + 16 + 25)}
⇒ cos θ = 25/{√(50)×√(50)}
⇒ cos θ = 25/50
⇒ cos θ = 1/2
⇒ cos θ = π/3
⇒ θ = π/3
So, the angle between the vectors with direction ratios are 4, -3, 5 and 3, 4, 5 is π/3
MCQ Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers
Question 6 :
If P(x, y, z) is a point on the line segment joining Q(2, 2, 4) and R(3, 5, 6) such that the projections of OP on the axes are 13/5, 19/5, 26/5 respectively, then P divides QR in the ration
(a) 1 : 2
(b) 3 : 2
(c) 2 : 3
(d) 1 : 3
Correct Answer – (B)
Since OP has projections 13/5, 19/5 and 26/5 on the coordinate axes, therefore
OP = 13i/5 + 19j/5 + 26/5k
Let P divides the join of Q(2, 2, 4) and R(3, 5, 6) in the ratio m : 1
Then the position vector of P is
{(3m + 2)/(m + 1), (5m + 2)/(m + 1), (6m + 4)/(m + 1)}
So, 13i/5 + 19j/5 + 26/5k = (3m + 2)/(m + 1)+ (5m + 2)/(m + 1)+ (6m + 4)/(m + 1)
⇒ (3m + 2)/(m + 1) = 13/5
⇒ 2m = 3
⇒ m = 3/2
⇒ m : 1 = 3 : 2
Hence, P divides QR in the ration 3 : 2
Question 7 :
The points on the y- axis which are at a distance of 3 units from the point (2, 3, -1) is
(a) either (0, -1, 0) or (0, -7, 0)
(b) either (0, 1, 0) or (0, 7, 0)
(c) either (0, 1, 0) or (0, -7, 0)
(d) either (0, -1, 0) or (0, 7, 0)
Correct Answer – (D)
Let the point on y-axis is O(0, y, 0)
Given point is A(2, 3, -1)
Given OA = 3
⇒ OA² = 9
⇒ (2 – 0)² + (3 – y)² + (-1 – 0)² = 9
⇒ 4 + (3 – y)² + 1 = 9
⇒ 5 + (3 – y)² = 9
⇒ (3 – y)² = 9 – 5
⇒ (3 – y)² = 4
⇒ 3 – y = √4
⇒ 3 – y = ±4
⇒ 3 – y = 4 and 3 – y = -4
⇒ y = -1, 7
So, the point is either (0, -1, 0) or (0, 7, 0)
Question 8 :
The maximum distance between points (3sin θ, 0, 0) and (4cos θ, 0, 0) is
(a) 3
(b) 4
(c) 5
(d) Can not be find
Correct Answer – (C)
Given two points are (3sin θ, 0, 0) and (4cos θ, 0, 0)
Now distance = √{(4cos θ – 3sin θ)² + (0 – 0)² + (0 – 0)²}
⇒ distance = √{(4cos θ – 3sin θ)²}
⇒ distance = 4cos θ – 3sin θ …………….1
Now, maximum value of 4cos θ – 3sin θ = √{(4² + (-3)²}
= √(16 + 9)
= √25
= 5
From equation 1, we get
distance = 5
So, the maximum distance between points (3sin θ, 0, 0) and (4cos θ, 0, 0) is 5
Question 9 :
The equation of plane passing through the point i + j + k and parallel to the plane r . (2i – j + 2k) = 5 is
(a) r . (2i – j + 2k) = 2
(b) r . (2i – j + 2k) = 3
(c) r . (2i – j + 2k) = 4
(d) r . (2i – j + 2k) = 5
Correct Answer – (B)
The equation of plane parallel to the plane r . (2i – j + 2k) = 5 is
r . (2i – j + 2k) = d
Since it passes through the point i + j + k, therefore
(i + j + k) . (2i – j + 2k) = d
⇒ d = 2 – 1 + 2
⇒ d = 3
So, the required equation of the plane is
r . (2i – j + 2k) = 3
Question 10 :
The coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ plane is
(a) (0, 17/2, 13/2)
(b) (0, -17/2, -13/2)
(c) (0, 17/2, -13/2)
(d) None of these
Correct Answer – (C)
The line passing through the points (5, 1, 6) and (3, 4, 1) is given as
(x-5)/(3-5) = (y-1)/(4-1) = (z-6)/(1-6)
⇒ (x-5)/(-2) = (y-1)/3 = (z-6)/(-5) = k(say)
⇒ (x-5)/(-2) = k
⇒ x – 5 = -2k
⇒ x = 5 – 2k
(y-1)/3 = k
⇒ y – 1 = 3k
⇒ y = 3k + 1
and (z-6)/(-5) = k
⇒ z – 6 = -5k
⇒ z = 6 – 5k
Now, any point on the line is of the form (5 – 2k, 3k + 1, 6 – 5k)
The equation of YZ-plane is x = 0
Since the line passes through YZ-plane
So, 5 – 2k = 0
⇒ k = 5/2
Now, 3k + 1 = 3 × 5/2 + 1 = 15/2 + 1 = 17/2
and 6 – 5k = 6 – 5×5/2 = 6 – 25/2 = -13/2
Hence, the required point is (0, 17/2, -13/2)
- NCERT Solutions Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers : Exercise 12.1
- NCERT Solutions Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers : Exercise 12.2
- NCERT Solutions Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers : Exercise 12.3
- NCERT Solutions Class 11 Mathematics Introduction to Three Dimensional Geometry with Answers : Exercise 12 Misc
- NCERT Solutions Class 11 Mathematics Textbook download