CBSE Class 11 Mathematics Chapter 4 Principle of Mathematical Induction Multiple Choice Questions with Answers. MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 11 Mathematics Principle of Mathematical Induction MCQs with Answers to know their preparation level.
Students who are searching for NCERT MCQ Questions for Class 11 Mathematics Principle of Mathematical Induction with Answers are compiled here to get good practice on all fundamentals. Know your preparation level on MCQ Questions for Class 11 Mathematics with Answers. You can also verify your answers from our provided MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers. So, ace up your preparation with MCQ of Chapter 4 Mathematics Objective Questions.
MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers - Set - 1
Question 1:
Find the number of shots arranged in a complete pyramid the base of which is an equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6
Correct Answer – (B)
Let each side of the base contains n shots,
then the number of shots in the lowest layer = n + (n – 1) + (n – 2) + ………..+ 1
= n(n + 1)/2
= (n² + n)/2
Now, write (n – 1), (n – 2), ….. for n, then we obtain the number of shots in 2nd, 3rd…layers
So, Total shots = ∑(n² + n)/2
= (1/2)×{∑n² + ∑n}
= (1/2)×{n(n+1)(2n+1)/6 + n(n+1)/2}
= n(n+1)(n+2)/6
Question 2 :
The nth terms of the series 3 + 7 + 13 + 21 +………. is
(a) 4n – 1
(b) n² + n + 1
(c) none of these
(d) n + 2
Correct Answer – (B)
Let S = 3 + 7 + 13 + 21 +……….an-1 + an …………1
and S = 3 + 7 + 13 + 21 +……….an-1 + an …………2
Subtract equation 1 and 2, we get
S – S = 3 + (7 + 13 + 21 +……….an-1 + an) – (3 + 7 + 13 + 21 +……….an-1 + an)
⇒ 0 = 3 + (7 – 3) + (13 – 7) + (21 – 13) + ……….+ (an – an-1) – an
⇒ 0 = 3 + {4 + 6 + 8 + ……(n-1)terms} – an
⇒ an = 3 + {4 + 6 + 8 + ……(n-1)terms}
⇒ an = 3 + (n – 1)/2 × {2 ×4 + (n – 1 – 1)2}
⇒ an = 3 + (n – 1)/2 × {8 + (n – 2)2}
⇒ an = 3 + (n – 1) × {4 + n – 2}
⇒ an = 3 + (n – 1) × (n + 2)
⇒ an = 3 + n² + n – 2
⇒ an = n² + n + 1
So, the nth term is n² + n + 1
Question 3 :
For any natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7
Correct Answer – (C)
Given, 7n – 2n
Let n = 1
7n – 2n = 71 – 21 = 7 – 2 = 5
which is divisible by 5
Let n = 2
7n – 2n = 72 – 22 = 49 – 4 = 45
which is divisible by 5
Let n = 3
7n – 2n = 73 – 23 = 343 – 8 = 335
which is divisible by 5
Hence, for any natural number n, 7n – 2n is divisible by 5
Question 4 :
The sum of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6
Correct Answer – (D)
Question 5 :
If n is an odd positive integer, then an + bn is divisible by :
(a) a² + b²
(b) a + b
(c) a – b
(d) none of these
Correct Answer – (B)
MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers
Question 6 :
n(n + 1)(n + 5) is a multiple of ____ for all n ∈ N
(a) 2
(b) 3
(c) 5
(d) 7
Correct Answer – (B)
Let P(n) : n(n + 1)(n + 5) is a multiple of 3.
For n = 1, the given expression becomes (1 × 2 × 6) = 12, which is a multiple of 3.
So, the given statement is true for n = 1, i.e. P(1) is true.
Let P(k) be true. Then,
P(k) : k(k + 1)(k + 5) is a multiple of 3
⇒ K(k + 1)(k + 5) = 3m for some natural number m, … (i)
Now, (k + 1)(k + 2)(k + 6) = (k + 1)(k + 2)k + 6(k + 1)(k + 2)
= k(k + 1)(k + 2) + 6(k + 1)(k + 2)
= k(k + 1)(k + 5 – 3) + 6(k + 1)(k + 2)
= k(k + 1)(k + 5) – 3k(k + 1) + 6(k + 1)(k + 2)
= k(k + 1)(k + 5) + 3(k + 1)(k +4) [on simplification]
= 3m + 3(k + 1 )(k + 4) [using (i)]
= 3[m + (k + 1)(k + 4)], which is a multiple of 3
⇒ P(k + 1) : (k + 1 )(k + 2)(k + 6) is a multiple of 3
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.
Question 7 :
1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + …….. + 1/{n(n + 1)(n + 2)} =
(a) {n(n + 3)}/{4(n + 1)(n + 2)}
(b) (n + 3)/{4(n + 1)(n + 2)}
(c) n/{4(n + 1)(n + 2)}
(d) None of these
Correct Answer – (A)
Let P (n): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)} .
Putting n = 1 in the given statement, we get
LHS = 1/(1 ∙ 2 ∙ 3) = 1/6 and RHS = {1 × (1 + 3)}/[4 × (1 + 1)(1 + 2)] = ( 1 × 4)/(4 × 2 × 3) = 1/6.
Therefore LHS = RHS.
Thus, the given statement is true for n = 1, i.e., P(1) is true.
Let P(k) be true. Then,
P(k): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……… + 1/{k(k + 1)(k + 2)} = {k(k + 3)}/{4(k + 1)(k + 2)}. ……. (i)
Now, 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………….. + 1/{k(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}
= [1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………..…. + 1/{ k(k + 1)(k + 2}] + 1/{(k + 1)(k + 2)(k + 3)}
= [{k(k + 3)}/{4(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}] [using(i)]
= {k(k + 3)² + 4}/{4(k + 1)(k + 2)(k + 3)}
= (k³ + 6k² + 9k + 4)/{4(k + 1)(k + 2)(k + 3)}
= {(k + 1)(k + 1)(k + 4)}/{4 (k + 1)(k + 2)(k + 3)}
= {(k + 1)(k + 4)}/{4(k + 2)(k + 3)
⇒ P(k + 1): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……….….. + 1/{(k + 1)(k + 2)(k + 3)}
= {(k + 1)(k + 2)}/{4(k + 2)(k + 3)}
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.
Question 8 :
{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} =
(a) 1/(n + 1) for all n ∈ N.
(b) 1/(n + 1) for all n ∈ R
(c) n/(n + 1) for all n ∈ N.
(d) n/(n + 1) for all n ∈ R
Correct Answer – (A)
Let the given statement be P(n). Then,
P(n): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} = 1/(n + 1).
When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.
Therefore LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 1)
Now, [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]
= [1/(k + 1)] ∙ [{(k + 2 ) – 1}/(k + 2)}]
= [1/(k + 1)] ∙ [(k + 1)/(k + 2)]
= 1/(k + 2)
Therefore p(k + 1): [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 2)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.
Question 9 :
1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{n(n + 1)}
(a) n(n + 1)
(b) n/(n + 1)
(c) 2n/(n + 1)
(d) 3n/(n + 1)
Correct Answer – (B)
Let the given statement be P(n). Then,
P(n): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{n(n + 1)} = n/(n + 1).
Putting n = 1 in the given statement, we get
LHS = 1/(1 ∙ 2) = and RHS = 1/(1 + 1) = 1/2.
LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{k(k + 1)} = k/(k + 1) ..…(i)
Now 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{k(k + 1)} + 1/{(k + 1)(k + 2)}
[1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{k(k + 1)}] + 1/{(k + 1)(k + 2)}
= k/(k + 1)+1/{ (k + 1)(k + 2)}.
{k(k + 2) + 1}/{(k + 1)²/[(k + 1)k + 2)] using …(ii)
= {k(k + 2) + 1}/{(k + 1)(k + 2}
= {(k + 1)² }/{(k + 1)(k + 2)}
= (k + 1)/(k + 2) = (k + 1)/(k + 1 + 1)
⇒ P(k + 1): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ……… + 1/{ k(k + 1)} + 1/{(k + 1)(k + 2)}
= (k + 1)/(k + 1 + 1)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.
Question 10 :
The sum of the series 1³ + 2³ + 3³ + ………..n³ is
(a) {(n + 1)/2}²
(b) {n/2}²
(c) n(n + 1)/2
(d) {n(n + 1)/2}²