MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers

CBSE Class 11 Mathematics Chapter 4 Principle of Mathematical Induction Multiple Choice Questions with Answers. MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 11 Mathematics Principle of Mathematical Induction MCQs with Answers to know their preparation level.

Students who are searching for NCERT MCQ Questions for Class 11 Mathematics Principle of Mathematical Induction with Answers are compiled here to get good practice on all fundamentals. Know your preparation level on MCQ Questions for Class 11 Mathematics with Answers. You can also verify your answers from our provided MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers. So, ace up your preparation with MCQ of Chapter 4 Mathematics Objective Questions.

MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers - Set - 2

Question 1: 

{1/(3 ∙ 5)} + {1/(5 ∙ 7)} + {1/(7 ∙ 9)} + ……. + 1/{(2n + 1)(2n + 3)} =
(a) n/(2n + 3)
(b) n/{2(2n + 3)}
(c) n/{3(2n + 3)}
(d) n/{4(2n + 3)}

Correct Answer – (C)
Hint:
Let the given statement be P(n). Then,
P(n): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + ……. + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3).
Putting n = 1 in the given statement, we get
and LHS = 1/(3 ∙ 5) = 1/15 and RHS = 1/{3(2 × 1 + 3)} = 1/15.
LHS = RHS
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + …….. + 1/{(2k + 1)(2k + 3)} = k/{3(2k + 3)} ….. (i)
Now, 1/(3 ∙ 5) + 1/(5 ∙ 7) + ..…… + 1/[(2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}2(k + 1) + 3
= {1/(3 ∙ 5) + 1/(5 ∙ 7) + ……. + [1/(2k + 1)(2k + 3)]} + 1/{(2k + 3)(2k + 5)}
= k/[3(2k + 3)] + 1/[2k + 3)(2k + 5)] [using (i)]
= {k(2k + 5) + 3}/{3(2k + 3)(2k + 5)}
= (2k² + 5k + 3)/[3(2k + 3)(2k + 5)]
= {(k + 1)(2k + 3)}/{3(2k + 3)(2k + 5)}
= (k + 1)/{3(2k + 5)}
= (k + 1)/[3{2(k + 1) + 3}]
= P(k + 1) : 1/(3 ∙ 5) + 1/(5 ∙ 7) + …….. + 1/[2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}{2(k + 1) + 3}]
= (k + 1)/{3{2(k + 1) + 3}]
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for n ∈ N.

Question 2 : 

For all n∈N, 72n − 48n−1 is divisible by :
(a) 25
(b) 2304
(c) 1234
(d) 26

Correct Answer – (B)
Hint:
Given number = 72n − 48n − 1
Let n = 1, 2 ,3, 4, ……..
72n − 48n − 1 = 7² − 48 − 1 = 49 – 48 – 1 = 49 – 49 = 0
72n − 48n − 1 = 74 − 48 × 2 − 1 = 2401 – 96 – 1 = 2401 – 97 = 2304
72n − 48n − 1 = 76 − 48 × 3 − 1 = 117649 – 144 – 1 = 117649 – 145 = 117504 = 2304 × 51
Since, all these numbers are divisible by 2304 for n = 1, 2, 3,…..
So, the given number is divisible by 2304

Question 3 : 

(1 + x)n ≥ ____ for all n ∈ N,where x > -1
(a) 1 + nx
(b) 1 – nx
(c) 1 + nx/2
(d) 1 – nx/2

Correct Answer – (A)
Hint:
Let P(n): (1 + x) )n ≥ (1 + nx).
For n = 1, we have LHS = (1 + x))1 = (1 + x), and
RHS = (1 + 1 ∙ x) = (1 + x).
Therefore LHS ≥ RHS is true.
Thus, P(1) is true.
Let P(k) is true. Then,
P(k): (1 + x)1 ≥ (1 + kx). …….. (i)
Now,(1 + x)k+1 = (1 + x)k (1 + x)
≥ (1 + kx)(1 + x) [using (i)]
=1 + (k + 1)x + kx²
≥ 1 + (k + 1)x + x [Since kx² ≥ 0]
Therefore P(k + 1) : (1 + x)k + 1 ≥ 1 + (k + 1)x
⇒ P(k +1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Question 4 : 

Find the number of shots arranged in a complete pyramid the base of which is an equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6

Correct Answer – (B)
Hint:
Let each side of the base contains n shots,
then the number of shots in the lowest layer = n + (n – 1) + (n – 2) + ………..+ 1
= n(n + 1)/2
= (n² + n)/2
Now, write (n – 1), (n – 2), ….. for n, then we obtain the number of shots in 2nd, 3rd…layers
So, Total shots = ∑(n² + n)/2
= (1/2) × {∑n² + ∑n}
= (1/2) × {n(n+1)(2n+1)/6 + n(n+1)/2}
= n(n+1)(n+2)/6

Question 5 : 

(n² + n) is ____ for all n ∈ N.
(a) Even
(b) odd
(c) Either even or odd
(d) None of these

Correct Answer – (A)
Hint:
Let P(n): (n² + n) is even.
For n = 1, the given expression becomes (1² + 1) = 2, which is even.
So, the given statement is true for n = 1, i.e., P(1)is true.
Let P(k) be true. Then,
P(k): (k² + k) is even
⇒ (k² + k) = 2m for some natural number m. ….. (i)
Now, (k + 1)² + (k + 1) = k² + 3k + 2
= (k² + k) + 2(k + 1)
= 2m + 2(k + 1) [using (i)]
= 2[m + (k + 1)], which is clearly even.
Therefore, P(k + 1): (k + 1)² + (k + 1) is even
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n)is true for all n ∈ N.

MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers

Question 6 : 

The sum of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6

Correct Answer – (D)

Question 7 : 

102n-1 + 1 is divisible by ____ for all N ∈ N
(a) 9
(b) 10
(c) 11
(d) 13

Correct Answer – (C)

Hint:
Let P (n): (102n-1 + 1) is divisible by 11.
For n=1, the given expression becomes {10(2×1-1) + 1} = 11, which is divisible by 11.
So, the given statement is true for n = 1, i.e., P (1) is true.
Let P(k) be true. Then,
P(k): (102k-1 + 1) is divisible by 11
⇒ (102k-1 + 1) = 11 m for some natural number m.
Now, {102(k-1)-1 – 1 + 1} = (102k+1 + 1) = {10² ∙ 10(2k+1)+ 1}
= 100 × {102k-1 + 1 } – 99
= (100 × 11 m) – 99
= 11 × (100 m – 9), which is divisible by 11
⇒ P (k + 1) : {102(k-1) – 1 + 1} is divisible by 11
⇒ P (k + 1) is true, whenever P(k) is true.
Thus, P (1) is true and P(k + 1) is true , whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Question 8 : 

{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} =
(a) 1/(n + 1) for all n ∈ N.
(b) 1/(n + 1) for all n ∈ R
(c) n/(n + 1) for all n ∈ N.
(d) n/(n + 1) for all n ∈ R

Correct Answer – (A)
Hint:
Let the given statement be P(n). Then,
P(n): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} = 1/(n + 1).
When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.
Therefore LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 1)
Now, [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]
= [1/(k + 1)] ∙ [{(k + 2 ) – 1}/(k + 2)}]
= [1/(k + 1)] ∙ [(k + 1)/(k + 2)]
= 1/(k + 2)
Therefore p(k + 1): [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 2)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Question 9 : 

For all n ∈ N, 3×52n+1 + 23n+1 is divisible by
(a) 19
(b) 17
(c) 23
(d) 25

Correct Answer – (B)

Question 10 : 

For any natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7

Correct Answer – (C)
Hint:
Given, 7n – 2n
Let n = 1
7n – 2n = 71 – 21 = 7 – 2 = 5
which is divisible by 5
Let n = 2
7n – 2n = 72 – 22 = 49 – 4 = 45
which is divisible by 5
Let n = 3
7n – 2n = 7³ – 2³ = 343 – 8 = 335
which is divisible by 5
Hence, for any natural number n, 7n – 2n is divisible by 5

MCQ Class 11 Mathematics Principle of Mathematical Induction with Answers

MCQ Class 11 Mathematics Trigonometric Functions with Answers

Related Posts

Leave a Reply