MCQ Class 11 Mathematics Trigonometric Functions with Answers

CBSE Class 11 Mathematics Chapter 3 Trigonometric Functions Multiple Choice Questions with Answers. MCQ Class 11 Mathematics Trigonometric Functions with Answers was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 11 Mathematics Trigonometric Functions MCQs with Answers to know their preparation level.

Students who are searching for NCERT MCQ Questions for Class 11 Mathematics Trigonometric Functions with Answers are compiled here to get good practice on all fundamentals. Know your preparation level on MCQ Questions for Class 11 Mathematics with Answers. You can also verify your answers from our provided MCQ Class 11 Mathematics Trigonometric Functions with Answers. So, ace up your preparation with MCQ of Chapter 3 Mathematics Objective Questions.

MCQ Class 11 Mathematics Trigonometric Functions with Answers - Set - 3

Question 1: 

In any triangle ABC, if cos A/a = cos B/b = cos C/c and the side a = 2, then the area of the triangle is
(a) √3
(b) √3/4
(c) √3/2
(d) 1/√3

Correct Answer – (A)

Given cos A/a = cos B/b = cos C/c
= cos A/k × sin A = cos B/k × sin B = cos C/k × sin C {since sin A/a = sin B/b = sin C/c = k}
= cot A = cot B = cot C
⇒ A = B = C = 60
So, triangle ABS is equilateral.
Now area of the triangle = (√3/4) × a² = (√3/4) × 2² = (√3/4) × 4 = √3

Question 2 : 

If a × cos x + b × cos x = c, then the value of (a × sin x – b × cos x)² is
(a) a² + b² + c²
(b) a² – b² – c²
(c) a² – b² + c²
(d) a² + b² – c²

Correct Answer – (D)

We have
(a × cos x + b × sin x)² + (a × sin x – b × cos x)² = a² + b²
⇒ c² + (a × sin x – b × cos x)² = a² + b²
⇒ (a × sin x – b × cos x)² = a² + b² – c²

Question 3 : 

The value of cos 420° is
(a) 0
(b) 1
(c) 1/2
(d) √3/2

Correct Answer – (C)

cos 420° = cos(360° + 60° ) = cos 60° = 1/2

Question 4 : 

If tan x = (cos 9 + sin 9)/(cos 9 – sin 9), then x =
(a) 45
(b) 54
(c) 36
(d) None of these

Correct Answer – (B)

Given, tan x = (cos 9 + sin 9)/(cos 9 – sin 9)
⇒ tan x = {cos 9(1 + sin 9/cos 9)}/{cos 9(1 – sin 9/cos 9)}
⇒ tan x = (1 + tan 9)}/(1 – tan 9)
⇒ tan x = (tan 45 + tan 9)}/(1 – tan 45 × tan 9) {since tan 45 = 1}
⇒ tan x = tan(45 + 9) {Apply tan(A + B) formula}
⇒ tan x = tan(54)
⇒ x = 54

Question 5 : 

The value of tan A/2 – cot A/2 + 2cot A is
(a) 0
(b) 1
(c) -1
(d) None of these

Correct Answer – (A)

Answer: (a) 0
Given, tan A/2 – cot A/2 + 2cot A
= {sin(A/2)/cos(A/2)} – {cos(A/2)/sin(A/2)} + 2cotA
= {sin² (A/2) – cos² (A/2)}/{cos(A/2) × sin(A/2)} + 2cotA
= -{cos² (A/2) – sin² (A/2)}/{cos(A/2) × sin(A/2)} + 2cotA
= -{cosA}/{cos(A/2) × sin(A/2)} + 2cotA (since cos² A – sin² A = cos²A )
= -{cos(2A/2)}/{cos(A/2) × sin(A/2)} + 2cotA
= -{2 × cosA}/{2 × cos(A/2) × sin(A/2)} + 2cotA
= -{2cosA}/{sin(2A/2)} + 2cotA
= {-(2cosA)/(sinA)} + 2cotA (since sin2A = 2 × sinA × cosA)
= -2cotA + 2cotA
= 0

MCQ Class 11 Mathematics Trigonometric Functions with Answers

Question 6 : 

When the length of the shadow of a pole is equal to the height of the pole, then the elevation of source of light is
(a) 30°
(b) 60°
(c) 75°
(d) 45°

Correct Answer – (D)

Let AB is the length of the pole and BC is the shadow of the pole.
Given AB = BC
Now from triangle ABC,
tan θ = AB/BC
⇒ tan θ = 1
⇒ θ = 45°
So, the elevation of source of light is 45°

Question 7 : 

If in a triangle ABC, tan A + tan B + tan C = 6 then the value of cot A × cot B × cot C is
(a) 1/2
(b) 1/3
(c) 1/4
(d) 1/6

Correct Answer – (D)

Given tanA + tanB + tanC = 6
Now tan(A + B + C) = {(tanA + tanB + tanC) – tanA × tanB × tanC}/{1 – (tanA × tanB + tanB × tanC + tanA × tanC)}
We know that,
A + B + C = π
⇒ tan(A + B + C) = tan π
⇒ tan(A + B + C) = 0
Now
0 = {(tanA + tanB + tanC) – tanA × tanB × tanC}/{1 – (tanA × tanB + tanB × tanC + tanA × tanC)}
⇒ tanA + tanB + tanC – tanA × tanB × tanC = 0
⇒ tanA + tanB + tanC = tanA × tanB × tanC
⇒ tanA × tanB × tanC = 6
⇒ (1/cotA) × (1/cotB) × (1/cotC) = 6
⇒ 1/(cot A × cot B × cot C) = 6
⇒ cot A × cot B × cot C = 1/6

Question 8 : 

In a triangle ABC, sin A – cos B = cos C, then angle B is
(a) π/2
(b) π/3
(c) π/4
(d) π/6

Correct Answer – (A)

Given, sin A – cos B = sin C
⇒ sin A = cos B + sin C
⇒ 2 × sin (A/2) × cos (A/2) = 2 × cos {(B + C)/2} × cos {(B – C)/2}
⇒ 2 × sin (A/2) × cos (A/2) = 2 × cos {π/2 – A/2} × cos {(B – C)/2}
⇒ 2 × sin (A/2) × cos (A/2) = 2 × sin (A/2) × cos {(B – C)/2}
⇒ cos (A/2) = cos {(B – C)/2}
⇒ A/2 = (B – C)/2
⇒ A = B – C
⇒ B = A + C
⇒ B = π – B {Since A + B + C = π}
⇒ 2B = π
⇒ B = π/2

Question 9 : 

The value of 4 × sin x × sin(x + π/3) × sin(x + 2π/3) is
(a) sin x
(b) sin 2x
(c) sin 3x
(d) sin 4x

Correct Answer – (C)

Given, 4 × sin x × sin(x + π/3) × sin(x + 2π/3)
= 4 × sin x × {sin x × cos π/3 + cos x × sin π/3} × {sin x × cos 2π/3 + cos x × sin 2π/3}
= 4 × sin x × {(sin x)/2 + (√3 × cos x)/2} × {-(sin x)/2 + (√3 × cos x)/2}
= 4 × sin x × {-(sin² x)/4 + (3 × cos² x)/4}
= sin x × {-sin² x + 3 × cos² x}
= sin x × {-sin² x + 3 × (1 – sin² x)}
= sin x × {-sin² x + 3 – 3 × sin² x}
= sin x × {3 – 4 × sin² x}
= 3 × sin x – 4sin³ x
= sin 3x
So, 4 × sin x × sin(x + π/3) × sin(x + 2π/3) = sin 3x

Question 10 : 

The value of sin 15 + cos 15 is
(a) 1
(b) 1/2
(c) √3/2
(d) √3

Correct Answer – (C)

Given, sin 15 + cos 15
= sin 15 + cos(90 – 15)
= sin 15 + sin 15
= 2 × sin 45 × cos 30
= 2 × (1/√2) × (√3/2)
= √3/2

MCQ Class 11 Mathematics Trigonometric Functions with Answers

MCQ Class 11 Mathematics Relations and Functions with Answers

Related Posts

Leave a Reply