CBSE Class 11 Mathematics Chapter 3 Trigonometric Functions Multiple Choice Questions with Answers. MCQ Class 11 Mathematics Trigonometric Functions with Answers was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 11 Mathematics Trigonometric Functions MCQs with Answers to know their preparation level.
Students who are searching for NCERT MCQ Questions for Class 11 Mathematics Trigonometric Functions with Answers are compiled here to get good practice on all fundamentals. Know your preparation level on MCQ Questions for Class 11 Mathematics with Answers. You can also verify your answers from our provided MCQ Class 11 Mathematics Trigonometric Functions with Answers. So, ace up your preparation with MCQ of Chapter 3 Mathematics Objective Questions.
MCQ Class 11 Mathematics Trigonometric Functions with Answers - Set - 4
Question 1:
The value of cos(π/7) × cos(2π/7) × cos(4π/7) is
(a) -1/2
(b) -1/4
(c) -1/6
(d) -1/8
Correct Answer – (D)
We know that cos A × cos 2A × cos 2² A × ……………… × cos 2n-1 A = sin (2ⁿ A)/{2ⁿ × sin A} ……………1
Given, cos(π/7) × cos(2π/7) × cos(4π/7)
= cos(π/7) × cos(2π/7) × cos(2² π/7)
= [sin (2³ × π/7) ]/{2³ × sin (π/7)} ……………..from equation 1
= [sin (8π/7) ]/{8 × sin (π/7)}
= [sin (π + π/7) ]/{8 × sin (π/7)}
= -sin (π/7)/{8 × sin (π/7)}
= -1/8
So, cos(π/7) × cos(2π/7) × cos(4π/7) = -1/8
Question 2 :
In a ΔABC, (b + c) cos A + (c + a) cos B + (a + b) cos C is equal to
(a) a + b + c
(b) 0
(c) none of these
(d) Rr
Correct Answer – (A)
Given (b + c) cos A + (c + a) cos B + (a + b) cos C
= b × cos A + c × cos A + c × cos B + a × cos B + a × cos C + b × cos C
= (b × cos C + c × cos B) + (c × cos A + a × cos C) + (b × cos A + a × cos B)
= a + b + c {since b × cos C + c × cos B = a, c × cos A + a × cos C = b, b × cos A + a × cos B = c}
Question 3 :
The value of cos 4A – cos 4B is
(a) (cos A – cos B) × (cos A + cos B) × (cos A – sin B) × (cos A + sin B)
(b) 2(cos A – cos B) × (cos A + cos B) × (cos A – sin B) × (cos A + sin B)
(c) 4(cos A – cos B) × (cos A + cos B) × (cos A – sin B) × (cos A + sin B)
(d) 8(cos A – cos B) × (cos A + cos B) × (cos A – sin B) × (cos A + sin B)
Correct Answer – (D)
Given, cos 4A – cos 4B
= 2cos² 2A – 1 – (2cos2 2B – 1) {since 2cos² x – 1 = cos 2x}
= 2cos² 2A – 1 – 2cos² 2B + 1
= 2cos² 2A – 2cos² 2B
= 2(cos² 2A – cos² 2B)
= 2(cos 2A – cos 2B) × (cos 2A + cos 2B)
= 2{2cos² A – 1 – (2cos² B – 1)} × {2cos² A – 1 + 1 – 2sin² B} {since 1 – 2sin² x = cos 2x}
= 2{2cos² A – 1 – 2cos² B + 1} × {2cos² A – 1 + 1 – 2sin² B}
= 2{2cos² A – 2cos² B} × {2cos² A – 2sin² B}
= 2 × 2 × 2{cos² A – cos² B} × {cos² A – sin² B}
= 8(cos A – cos B) × (cos A + cos B) × (cos A – sin B) × (cos A + sin B)
So, cos 4A – cos 4B = 8(cos A – cos B) × (cos A + cos B) × (cos A – sin B) × (cosA + sin B)
Question 4 :
The value of (sin7x + sin5x) /(cos7x + cos5x) + (sin9x + sin3x) / (cos9x + cos3x) is
(a) tan6x
(b) 2 tan6x
(c) 3 tan6x
(d) 4 tan6x
Correct Answer – (B)
Given, (sin7x + sin5x) /(cos7x + cos5x) + (sin9x + sin3x) / (cos9x + cos3x)
⇒ [{2×sin(7x + 5x)/2 × cos(7x – 5x)/2}/{2 × cos(7x + 5x)/2 × cos(7x – 5x)/2}] +
[{2×sin(9x + 3x)/2 × cos(9x – 3x)/2}/{2 × cos(9x + 3x)/2 × cos(9x – 3x)/2}]
⇒ [{2 × sin6x × cosx}/{2 × cos6x × cosx}] + [{2 × sin6x × cosx}/{2 × cos6x × cosx}]
⇒ (sin6x/cos6x) + (sin6x/cos6x)
⇒ tan6x + tan6x
⇒ 2 tan6x
Question 5 :
The equation (cos p – 1) x² + cos p × x + sin p = 0, where x is a variable, has real roots. Then the interval of p may be any one of the following:
(a) (0, π)
(b) (−π/2, π/2)
(c) (0, π)
(d) (−π, 0)
Correct Answer – (A)
The equation (cos p – 1)
x² + cos p × x + sin p = 0, where x is a variable, has real roots.
Now, for real roots,
Discriminant ≥ 0
⇒ cos² p – 4(cosp – 1)sinp ≥ 0
⇒ (cosp – 2sinp)² – 4sin² p + 4sinp ≥ 0
⇒ (cosp – 2sinp)² + 4sin p(1 – sinp) ≥ 0 ………..1
Now, 1 – sinp ≥ 0
⇒ For all real p such that 0 < p < π
So that 4sin p(1 – sinp) ≥ 0
So, p ∈ (0, π)
MCQ Class 11 Mathematics Trigonometric Functions with Answers
Question 6 :
tan² θ = 1 – a² then the value of sec θ + tan³ θ × cosec θ is
(a) (2 – a²)
(b) (2 – a²)1/2
(c) (2 – a²)3/2
(d) None of these
Correct Answer – (C)
Answer: (c) (2 – a²)3/2
Given, tan² θ = 1 – a²
⇒ tan θ = √(1 – a²)
From the figure and apply Pythagorus theorem,
AC² = AB² + BC²
⇒ AC² = {√(1 – a²)}² + 12
⇒ AC² = 1 – a² + 1
⇒ AC² = 2 – a²
⇒ AC = √(2 – a²)
Now, sec θ = √(2 – a²)
cosec θ = √(2 – a²)/√(1 – a²)
and tan θ = √(1 – a²)
Given, sec θ + tan³ θ × cosec θ
= √(2 – a²) + {(1 – a²)3/2 × √(2 – a²)/√(1 – a²)}
= √(2 – a²) + {(1 – a²) × (1 – a²) × √(2 – a²)/√(1 – a²)}
= √(2 – a²) + (1 – a²) × √(2 – a²)
= √(2 – a²) × (1 + 1 – a²)
= √(2 – a²) × (2 – a²)
= (2 – a²)3/2
So, sec θ + tan³ θ × cosec θ = (2 – a²)3/2
Question 7 :
The value of cos 420° is
(a) 0
(b) 1
(c) 1/2
(d) √3/2
Correct Answer – (C)
cos 420° = cos(360° + 60° ) = cos 60° = 1/2
Question 8 :
If x > 0 then the value of f(x) = -3 × cos√(3 + x + x²) lie in the interval
(a) [-1, 1]
(b) [-2, 2]
(c) [-3, 3]
(d) None of these
Correct Answer – (C)
Given x > 0 then 3 + x + x² > 0
Now, -1 ≤ cos√(3 + x + x² ) ≤ 1 {Since -1 ≤ cosx ≤ 1}
⇒ 3 ≥ -3 × cos√(3 + x + x² ) ≥ -3 {Multiply by -3}
⇒ -3 ≤ f(x) ≤ 3
⇒ f(x) ∈ [-3, 3]
Question 9 :
The value of (sec 8A – 1)/(sec 4A – 1) is
(a) 0
(b) 1
(c) tan 8A/tan 2A
(d) tan 2A/tan 8A
Correct Answer – (C)
Given, (sec 8A – 1)/(sec 4A – 1)
= (1/cos 8A – 1)/(1/cos 4A – 1)
= {(1 – cos 8A)/cos 8A}/{(1 – cos 4A)/cos 4A}
= {(1 – cos 8A) × cos 4A}/{(1 – cos 4A) × cos 8A}
= (2sin² 4A × cos 4A}/{2sin² 2A × cos 8A} {since cos 2A = 1 – 2sin² A}
= (2sin 4A × sin 4A × cos 4A}/{2sin 2A × sin 2A × cos 8A}
= (sin 8A × sin 4A}/{2sin 2A × sin 2A × cos 8A} {since sin 2A = 2×sin A × cos A}
= (sin 8A × 2sin 2A × cos 2A}/{2sin 2A × sin 2A × cos 8A}
= (sin 8A × cos 2A}/{sin 2A × cos 8A}
= (sin 8A/cos 8A)/(sin 2A/cos 2A)
= tan 8A/tan 2A
So, (sec 8A – 1)/(sec 4A – 1) = tan 8A/tan 2A
Question 10 :
The least values of cos² θ + sec² θ is
(a) 0
(b) 1
(c) 2
(d) more than 2
Correct Answer – (C)
If a × cos² θ + b × sec² θ is given,
then the least value = 2√ab
Now given, cos² θ + sec² θ
Here, a = 1, b = 1
Now, least value = 2√(1 × 1) = 2 × 1 = 2
- NCERT Solutions Class 11 Mathematics Relations and Functions : Exercise 2.1
- NCERT Solutions Class 11 Mathematics Relations and Functions : Exercise 2.2
- NCERT Solutions Class 11 Mathematics Relations and Functions : Exercise 2.3
- NCERT Solutions Class 11 Mathematics Relations and Functions : Exercise 2 Misc
- NCERT Solutions Class 11 Mathematics Textbook download