NCERT Class 8 Mathematics MCQ (14)

Class 8 Mathematics MCQ Factorisation

Class 8 Mathematics MCQ Factorisation with Answers is Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 8 Mathematics MCQ Factorisation with Answers to know their preparation level.

Students who are searching for NCERT Class 8 Mathematics MCQ Factorisation with Answers are compiled here to get good practice on all fundamentals. Know your preparation level on MCQ Questions for Class 8 Mathematics MCQ Factorisation with Answers. You can also verify your answers from the provided Class 8 Mathematics MCQ Factorisation with Answers. So, ace up your preparation with MCQ of Class 8 Mathematics MCQ & NCERT Textbook solutions Examinations.

NCERT Class 8 Mathematics MCQ
Factorisation with Answers

Question :The common factor of x²y² and x³y³ is
(a) x²y²
(b) x³y³
(c) x²y³
(d) x³y².

Show Answer :

Answer : (a) x²y²
Hint:
x2y2 = x × x × y × y
x3y3 = x × x × x × y × y × y

Question :The common factor of x3y2 and x4y is
(a) x43y2
(b) x4y
(c) x3y2
(d) x3y.

Show Answer :

Answer : (d) x3y.
Hint:
x3y2 = x × x × x × y × y
x4y = x × x × x × x × y

Factoring Calculator gives Factors of 70 i.e. 1, 2, 5, 7, 10, 14, 35, 70 numbers that divide 70 without a remainder.

Question :The common factor of a2 m4 and a4m2 is
(a) a4m4
(b) a2m2
(c) a2m4
(d) a4m2

Show Answer :

Answer : (b) a2m2
Hint:
a2m4 = a × a × m × m × m × m
a4m2 = a × a × a × a × m × m

Question :The common factor of p3q4 and p4q3 is
(a) p4q4
(b) p4q3
(c) p3q3
(d) p3q4

Show Answer :

Answer : (c) p3q3
Hint:
p3q4 = p × p × p × q × q × q × q
p4q3 = p × p × p × p × q × q × q

Question :The common factor 12y and 30 is
(a) 6
(b) 12
(c) 30
(d) 6y.

Show Answer :

Answer : (a) 6
Hint:
12y = 2 × 2 × 3 × y
30 = 2 × 3 × 5.

Question :The common factor of 2x, 3x3, 4 is
(a) 1
(b) 2
(c) 3
(d) 4.

Show Answer :

Answer : (a) 1
Hint:
2x = 2 × x
3x3 = 3 × x × x × x
4 = 2 × 2.

Question :The common factor of 10ab, 30bc, 50ca is
(a) 10
(b) 30
(c) 50
(d) abc.

Show Answer :

Answer : (a) 10
Hint:
10ab = 2 × 5 × a × b
30bc = 2 × 3 × 5 × b × c
50ca = 2 × 5 × 5 × c × a.

Question :The common factor of 14a2b and 35a4b² is
(a) a4
(b) 35a4
(c) 14a²b
(d) 7a²b.

Show Answer :

Answer : (d) 7a²b.
Hint:
14a²b = 2 × 7 × a × a × b
35a4b2 = 5 × 7 × a × a × a × a × b × b.

Question :The common factor of 8a2b4c2, 12a4bc4 and 20a3b4 is
(a) a4b4
(b) a2b2
(c) 4a2b2
(d) 4a2b.

Show Answer :

Answer : (d) 4a2b.
Hint:
8a2b4c2 = 2 × 2 × 2 × a × a × b × b × b × b × c × c
12a4bc2 = 2 × 2 × 3 × a × a × a × a × b × c × c
20a3b4 = 2 × 2 × 5 × a × a × a × b × b × b × b

Question :The common factor of 6a3b4c2, 21a2b and 15a3 is
(a) 3a2
(b) 3a3
(c) 6a3
(d) 6a2

Show Answer :

Answer : (a) 3a2
Hint:
6a3b4c2 = 2 × 3 × a × a × a × b × b × b × b × c × c
21a2b = 3 × 7 × a × a × a
15a364c4 = 3 × 5 × a × a × a

Question :The common factor of 2a2b4c2, 8a4b3c4 and 6a3b4c2 is
(a) 2a2b3c2
(b) 6a2b3c2
(c) 8a2b3c2
(d) a4b4c4.

Show Answer :

Answer : (a) 2a2b3c2
Hint:
6a2b4c2 = 2 × a × a × b × b × b × b × c × c × c × c
8a4b3c4 = 2 × 2 × 2 × a × a × a × a × b × b × b × c × c × c × c
6a3b4c2 = 2 × 3 × a × a × a × b × b × b × b × c × c.

Question :The common factor of 3a2b4c2, 12b2c4 and 15a3b4c4 is
(a) b4c4
(b) 3b2c2
(c) 15b2c4
(d) 12b2c4

Show Answer :

Answer : (b) 3b2c2
Hint:
3a²b4c² = 3 × a × a × b × b × b × b × c × c
12b²c4 = 2 × 2 × 3 × b × b × c × c × c × c.
15a³b4c4 = 3 × 5 × a × a × a × b × b × b × b × c × c × c × c.

Question :The common factor of 24x3y4, 36x4z4 and 48x3y2z is
(a) 12x3
(b) 24x3
(c) 36x3
(d)48x3

Show Answer :

Answer : (a) 12x3
Hint:
24x³y4 = 2 × 2 × 2 × 3 × x × x × x × y × y × y × y.
36x4z4 = 2 × 2 × 3 × 3 × x × x × x × x × z × z × z × z.
48x3y2z = 2 × 2 × 2 × 2 × 3 × x × x × x × y × y × z

Question :The common factor of 72x3y4z4, 120z2d4x4 and 96y3z4d4 is
(a) 96z3
(b) 120z3
(c) 72z3
(d) 24z2.

Show Answer :

Answer : (d) 24z2
Hint:
72x3y4z4 = 2 × 2 × 2 × 3 × 3 × x × x × x × y × y × y × y × z × z × z × z.
120z²d4x4 = 2 × 2 × 2 × 3 × 5 × z × z × d × d × d × d × x × x × x × x
96y3z4d4 = 2 × 2 × 2 × 2 × 2 × 3 × y × y × z × z × z × z × d × d × d × d

Question :The common factor of 36p2q3x4, 48pq3x2 and 54p3q3x4 is
(a) 6pq3x2
(b) 36pq3x2
(c) 54pq3x2
(d) 48pq3x2

Show Answer :

Answer : (a) 6pq3x2
Hint:
36p2q3x4 = 2 × 2 × 3 × 3 × p × p × q × q × q × x × x × x × x
48pq³x² = 2 × 2 × 2 × 2 × 3 × p × q × q × q × x × x
p3q3x4 = p × p × p × q × q × q × x × x × x × x

Question :The factorisation of 12a2b + 15ab2 is
(a) 3ab (4a + 5b)
(b) 3a2b (4a + 5b)
(c) 3ab2 (4a + 5b)
(d) 3a2b2 (4a + 5b).

Show Answer :

Answer : (a) 3ab (4a + 5b)
Hint:
12a²b + 15ab² = 3ab(4a + 5b).

Question :The factorisation of 10x2 – 18x3 + 14x4 is
(a) 2x2 (7x2 – 9x + 5)
(b) 2x (7x2 – 9x + 5)
(c) 2 (7x2 – 9x + 5)
(d) 2x3 (7x2 – 9x + 5).

Show Answer :

Answer : (a) 2x2 (7x2 – 9x + 5)
Hint:
10x² – 18x³ + 14x³ = 2x²(5 – 9x + 7x²).

Question :The factorisation of 6x – 42 is
(a) 6(x – 7)
(b) 3(x – 7)
(c) 2(x – 7)
(d) 6(x + 7)

Show Answer :

Answer : (a) 6(x – 7)
Hint:
6x – 42 = 6(x – 7)

Question :The factorisation of 6x + 12y is
(a) 6(x + 2y)
(b) 3(x + 4y)
(c) 2(3x + 12y)
(d) none of these.

Show Answer :

Answer : (a) 6(x + 2y)
Hint:
6x + 12y = 6(x + 2y)

Question :The factorisation of 28a3b5 – 42a5b3 is
(а) 14a3b3(2b2 – 3a2)
(b) 14a2b3(2b2 – 3a2)
(c) 14a3b2(2b2 – 3a2)
(d) none of these.

Show Answer :

Answer : (а) 14a3b3(2b2 – 3a2)
Hint:
28a³ b5 – 42a5b3 = 14a3b3(2b² – 3a²)

Question :The factorisation of a3 + a2b + ab2 is
(a) a(a2 + ab + b2)
(b) 6(a2 + ab + b2)
(c) ab(a2 + ab + b2)
(d) none of these.

Show Answer :

Answer : (a) a(a2 + ab + b2)
Hint:
a³ + a²b + ab² = a(a² + ab + b²)

Question :The factorisation of x2yz + xy2z + xyz2 is
(a) xyz(x + y + z)
(b) x2yz(x + y + z)
(c) xy2z(x + y + z)
(d) xyz2(x + y + z).

Show Answer :

Answer : (a) xyz(x + y + z)
Hint:
x²yz + xy²z + xyz² = xyz (x + y + z)

Question :The factorisation of ax2y + bxy2 + cxyz is
(a) xy(ax + by + cz)
(b) axy(ax + by + cz)
(c) bxy(ax + by + cz)
(d) cxy(ax + by + cz).

Show Answer :

Answer : (a) xy(ax + by + cz)
Hint:
ax²y + bxy² + cxyz = xy (ax + by + cz)

Question :The factorisation of
a (x + y + z) + b(x + y + z) + c(x + y + z) is
(a) (a + b + c)(x + y + z)
(b) (ab + bc + ca)(x + y + z)
(c) (xy + yz + zx)(a + b + c)
(d) none of these.

Show Answer :

Answer : (a) (a + b + c)(x + y + z)
Hint:
a(x + y + z) + b(x + y + z) + c(x + y + z)
= (x + y + z) (a + b + c).

Question :The factorisation of 6xy – 4y + 6 – 9x is
(a) (3x – 2)(2y – 3)
(b) (3x + 2)(2y – 3)
(c) (3x – 2)(2y + 3)
(d) (3x + 2)(2y + 3).

Show Answer :

Answer : (a) (3x – 2)(2y – 3)
Hint:
6xy – 4y + 6 – 9x
= 2y(3x – 2) – 3(- 2 + 3x)
= (3x – 2)(2y – 3)

Question :The factorisation of x2 + xy + 2x + 2y is
(a) (x + 2)(x + y)
(b) (x + 2)(x – y)
(c) (x – 2)(x + y)
(d) (x – 2)(x – y).

Show Answer :

Answer : (a) (x + 2)(x + y)
Hint:
x² + xy + 2x + 2y
= x(x + y) + 2(x + y)
= (x + 2) (x + y).

Question :The factorisation of ax + bx – ay – by is
(a) (x – y)(a + b)
(b) (x + y)(a + b)
(c) (x – y)(a – b)
(d) (x + y)(a – b).

Show Answer :

Answer : (a) (x – y)(a + b)
Hint:
ax + bx – ay – by
= x(a + b) – y(a + b)
= (x – y)(a + b).

Question :The factorisation of ab – a – b + 1 is
(a) (a – 1)(b – 1)
(b) (a + 1)(b + 1)
(c) (a – 1)(b + 1)
(d) (a + 1)(b – 1).

Show Answer :

Answer : (a) (a – 1)(b – 1)
Hint:
ab – a – b + 1
= a(b – 1) – 1(b – 1)
= (a – 1)(b – 1).

Question :The factorisation of
x2 + x + xy + y + zx + z is
(a) (x + y + z)(x + 1)
(b) (x + y + z)(x + y)
(c) (x + y + z)(y + z)
(d) (x + y + z)(z + x).

Show Answer :

Answer : (a) (x + y + z)(x + 1)
Hint:
x² + x + xy + y + zx + z
= x(x + 1) + y(x + 1) + z(x + 1)
= (x + 1)(x + y + z).

Question :The factorisation of x2y2 + xy + xy2z + yz + x2yz + xz is
(a) (xy + yz + zx)(xy + 1)
(b) (xy + yz + zx)(yz + 1)
(c) (xy + yz + zx)(zx + 1)
(d) none of these.

Show Answer :

Answer : (a) (xy + yz + zx)(xy + 1)
Hint:
x²y² + xy + xy²z + yz + x²yz + xz
= xy(xy + 1) + yz(xy + 1) + zx(xy + 1)
= (xy + yz + zx)(xy + 1).

Question :The factorisation of x2 + 8x + 16 is
(a) (x + 2)2
(b) (x + 4)2
(c) (x – 2)2
(d) (x – A)2

Show Answer :

Answer : (b) (x + 4)2
Hint:
x² + 8x + 16
= (x)² + 2 (x)(4) + (4)²
= (x + 4)².

Question :The factorisation of 4y2 – 12y + 9 is
(a) (2y + 3)2
(b) (2y – 3)2
(c) (3y + 2)2
(d) (3y – 2)2

Show Answer :

Answer : (b) (2y – 3)2
Hint:
4y² – 12y + 9
= (2y)² – 2(2y)(3) + (3)²
= (2y – 3)²

Question :The factorisation of 49p2 – 36 is
(a) (7p + 6)(7p – 6)
(b) (6p + 7)(6p – 7)
(c) (7p + 6)2
(d) (7p – 6)2

Show Answer :

Answer : (a) (7p + 6)(7p – 6)
Hint:
49p² – 36
= (7p)² – (6)² = (7p – 6)(7p + 6).

Question :The factorisation of y2 – 7y + 12 is
(a) (y + 3)(y + 4)
(b) (y + 3)(y – 4)
(c) (y – 3)(y + 4)
(d) (y – 3)(y – 4).

Show Answer :

Answer : (d) (y – 3)(y – 4)
Hint:
y² – 7y + 12
= y² – 3y – 4y + 12
= y(y – 3) – 4(y – 3)
= (y – 3)(y – 4).

Question :The factorisation of z2 – 4z – 12 is
(a) (z + 6)(z + 2)
(b) (z – 6)(z – 2)
(c) (z – 6)(z + 2)
(d) (z + 6)(z – 2).

Show Answer :

Answer : (c) (z – 6)(z + 2)
Hint:
z³ – 4z – 12
= z² – 6z + 2z — 12
= z(z – 6) + 2(z – 6)
= (z – 6)(z + 2).

Question :The factorisation of am2 + bm2 + bn2 + an2 is
(a) (a + b)(m2 – n2)
(b) (a + b)(m2 + n2)
(c) (a – b)(m2 + n2)
(d) (a – b)(m2 – n2).

Show Answer :

Answer : (b) (a + b)(m2 + n2)
Hint:
am² + bm² + bn² + an²
= m²(a + b) + n²(b + a)
= (a + b)(m² + n²).

Question :The factorisation of (lm + l) + m + 1 is
(a) (l + 1)(m + 1)
(6) (l – 1)(m – 1)
(c) (l + 1)(m – 1)
(d) (l – 1)(m + 1).

Show Answer :

Answer : (a) (l + 1)(m + 1)
Hint:
lm + l + m + 1
= l(m + 1) + 1 (m + 1)
= (l + 1 )(m + 1).

Question :The factorisation of (l + m)2 – 4lm is
(a) (l – m)2
(b) (l + m – 2)2
(c) (l + m + 2)2
(d) none of these.

Show Answer :

Answer : (a) (l – m)2
Hint:
(1 + m)² – 4lm
= l² + m² + 2lm – 4lm
= l² – 2lm + m² = (l – m)²

Question :The factorisation of
1 + p + q + r + pq + qr + pr + pqr is
(a) (1 + p)(1 + q)(1 + r)
(b) (1 – p)(1 – q)(1 – r)
(c) (1 – p)(1 – q)(1 + r)
(d) (1 + p)(1 – q)(1 – r).

Show Answer :

Answer : (a) (1 + p)(1 + q)(1 + r)
Hint:
1 + p + q + r + pq + qr+pr + pqr
= 1 + p + q + pq + r(1 + p + q + pq)
= (1 + r)(1 + p + q + pq)
= (1 + r)(1 + p)(1 + q).

Question :The value of
0.645 × 0.645 + 2 × 0.645 × 0.355 + 0.355 × 0.355 is
(a) 1
(b) 0
(c) -1
(d) 2.

Show Answer :

Answer : (a) 1
Hint:
Value = (0.645 + 0.355)² = (1)² = 1.

Question :The factorisation 1 + 16x + 64x² is
(a) (1 – 8x)2
(b) (1 + 8x)2
(c) (8 – x)2
(d) (8 + x)2

Show Answer :

Answer : (b) (1 + 8x)2
Hint:
1 + 16x + 64x²
= (1)2 + 2(1) (8x) + (8x)² = (1 + 8x)²

Question :The factorisation x2 + x + 14 is
(a) (x2 – 1)²
(b) (x2 + 1)²
(c) (x + 12
(d) (x – 12

Show Answer :

Answer : (c) (x + 12
Hint:
x² + x + 14 = x² + 2(x)(12) + (12)2
= (x + 12)2

Question :The value of 992 is
(a) (90)2 + 2(90)(9) + (9)2
(b) (90)2 – 2(90)(9) + (9)2
(c) (90)2 + (9)2
(d) none of these.

Show Answer :

Answer : (a) (90)2 + 2(90)(9) + (9)2
Hint:
99² = (90 + 9)²
= (90)² + 2(90)(9) + (9)²

Question :The value of 492 is
(a) (50)2 – 2(50)(1) + (1)2
(b) (50)2 + 2 (50) (1) + (1)2
(c) (50)2 – (1)2
(d) (50)2 + (1)2

Show Answer :

Answer : (a) (50)2 – 2(50)(1) + (1)2
Hint:
49² = (50 – 1)²
= (50)² – 2(50)(1) + (1)²

Question :The factorisation of (x2y2 -2+y2x2) x ≠ 0, y ≠ 0 is
(a) (xy+yx)2
(b) (xyyx)2
(c) (xy-1)2
(d) (xy+1)2

Show Answer :

Answer : (b) (xyyx)2
Hint:
x2y2 – 2 + y2x2
= (xy)2 – 2(xy)(yx) + (yx)2
= (xyyx)2

Question :The value of 0.73×0.73×0.27×0.270.730.27 is
(a) 1
(b) 0
(c) 0.73
(d) 0.27.

Show Answer :

Answer : (a) 1
Hint:
Value = (0.73+0.27)(0.730.27)0.730.27 = 1

Question :The factorisation of x2 – 9 is
(a) (x – 3)2
(b) (x + 3)2
(c) (x + 3)(x – 3)
(d) none of these.

Show Answer :

Answer : (c) (x + 3)(x – 3)
Hint:
x² – 9 = (x)² – (3)² = (x – 3) (x + 3).

Question :The factorisation of 36x2y2 – 1 is
(a) (6xy – 1)(6xy + 1)
(b) (6xy – 1)2
(c) (6xy + 1)2
(d) (6 + xy)2

Show Answer :

Answer : (a) (6xy – 1)(6xy + 1)
Hint:
36x²y² – 1 = (6xy)² – (1)²
= (6xy – 1)(6xy + 1).

Question :The value of 0.564×0.564×0.436×0.4360.5640.436 is
(a) 0
(b) 1
(c) -1
(d) none of these.

Show Answer :

Answer : (b) 1
Hint:
Value = (0.564+0.436)(0.5640.436)0.5640.436 = 1

Question :The value of (0.68)2 – (0.32)2 is
(a) -1
(b) 0
(c) 1
(d) 0.36.

Show Answer :

Answer : (d) 0.36.
Hint:
Value = (0.68 + 0.32) (0.68 – 0.32) = 0.36.

Question :The factorisation of 3x² + 10x + 8 is
(a) (3x + 4)(x + 2)
(b) (3x – 4)(x – 2)
(c) (3x + 4)(x – 2)
(d) (3x – 4)(x + 2).

Show Answer :

Answer : (a) (3x + 4)(x + 2)
Hint:
3x² + 10x + 8 = 3x² + 6x + 4x + 8
= 3x(x + 2) + 4(x + 2)
= (x + 2)(3x + 4).

Question :The factorisation of 3x2 – 16x + 16 is
(a) (x – 4)(3x – 4)
(b) (x + 4)(3x + 4)
(c) (x – 4)(3x + 4)
(d) (x + 4)(3x – 4).

Show Answer :

Answer : (a) (x – 4)(3x – 4)
Hint:
3x² – 16x + 16
= 3x² – 12x – 4x + 16
= 3x(x – 4) – 4(x – 4)
= (x – 4) (3x – 4).

Question :The factorisation of 6x2 – 5x – 6 is
(a) (2x – 3)(3x + 2)
(b) (2x + 3)(3x + 2)
(c) (2x – 3)(3x – 2)
(d) (2x + 3)(3x – 2).

Show Answer :

Answer : (a) (2x – 3)(3x + 2)
Hint:
6x² – 5x – 6
= 6x² – 9x + 4x – 6
= 3x(2x – 3) + 2(2x – 3)
= (2x – 3)(3x + 2).

Question :The factorisation of 6 – x – 2x2 is
(a) (2 + x)(3 – 2x)
(b) (2 + x)(3 + 2x)
(c) (2 – x)(3 – 2x)
(d) (2 – x)(3 + 2x).

Show Answer :

Answer : (a) (2 + x)(3 – 2x)
Hint:
6 – x – 2x²
= 6 + 3x – 4x – 2x²
= 3(2 + x) – 2x (2 + x)
= (2 + x)(3 – 2x).

Question :If x2 – x – 42 = (x + k)(x + 6), then k =
(a) 6
(b) -6
(c) 7
(d) -7.

Show Answer :

Answer : (d) -7
Hint:
x² – x – 42
= x² – 7x + 6x – 42
= x(x – 7) + 6(x – 7)
= (x – 7)(x + 6) ∴ k = – 7.

Question :The value of 3.5 × 3.5 – 2.5 × 2.5 is
(a) -6
(b) 6
(c) 60
(d) 1.

Show Answer :

Answer : (b) 6
Hint:
Value = (3.5 + 2.5)(3.5 – 2.5) = 6.

Question :If (x – 1x)² = x² + a + 1x2 then a =
(a) -2
(b) 2
(c) 2x
(d) -2x

Show Answer :

Answer : (a) -2
Hint:
(x – 1x)2 = x² – 2 + 1x2 ∴ a = -2.

Question :If x = 2, y = -1 then the value of x² -+ 4xy + 4y² is
(a) 0
(b) 1
(c) -1
(d) 2

Show Answer :

Answer : (a) 0
Hint:
x² + 4xy + 4y² = (x)² + 2(x)(2y) + (2y)²
= (x + 2y)² = {2 + 2(- 1)}² = 0.

Question :The quotient of 28x² + 14x is
(a) 2
(b) 2x
(c) x
(d) x²

Show Answer :

Answer : (b) 2x
Hint:
28x2114x = 2×2×7×x×x2×7×x = 2x

Question :The quotient of 12a8b8 + (- a6b6) is
(a) 3a2b2
(6) 3a2b
(c) 3ab2
(d) -3a2b2

Show Answer :

Answer : (d) -3a2b2
Hint:
MCQ Questions for Class 8 Maths Chapter 14 Factorisation with Answers


= -3a²b²

Question :The factorisation of 12a2b +15ab2 gives:
(a) 3ab(4ab + 5)
(b) 3ab(4a + 5(b)
(c) 3a(4a + 5(b)
(d) 3b(4a + 5(b)

Show Answer :

Answer : (b) 3ab(4a + 5(b)
Hint:
12a2b+15ab2
12a2b = 3 x 4 x a x a x b
15ab2 = 3 x 5 x a x b x b
The common factors are 3ab.
12a2b + 15ab2 = 3ab(4a +5b)

Question :The factorisation of 12x + 36 is
(a) 12(x + 3)
(b) 12(3x)
(c) 12(3x + 1)
(d) x(12 + 36x)

Show Answer :

Answer : (a) 12(x + 3)
Hint:
12x + 36
12 x + 12 . 3
= 12(x + 3)

Question :On factorising 14pq + 35pqr, we get:
(a) pq(14 + 35r)
(b) p(14q + 35qr)
(c) q(14p + 35pr)
(d) 7pq(2 + 5r)

Show Answer :

Answer : (d) 7pq(2 + 5r)
Hint:
14pq + 35pqr
= 2.7.p.q + 5.7.p.q.r
= 7pq(2 + 5r)

Question :The factors of 6xy – 4y + 6 – 9x are:
(a) (3x + 2) (2y + 3)
(b) (3x – 2) (2y – 3)
(c) (3x – 2) (2y + 3)
(d) (3x + 2) (2y – 3)

Show Answer :

Answer : (b) (3x – 2) (2y – 3)
Hint:
6xy – 4y + 6 – 9x
= 6xy – 4y – 9x + 6
= 2y (3x – 2) – 3 (3x – 2)
= (3x – 2) (2y – 3)

Question :The factors of x2 + xy + 8x + 8y are:
(a) (x +y) (x + 8)
(b) (2x + y) (x + 8)
(c) (x + 2y) (x + 8)
(d) (x + y) (2x + 8)

Show Answer :

Answer : (a) (x +y) (x + 8)
Hint:
x2 + xy + 8x + 8y
= x(x + y) + 8(x + y)
=(x + y)(x + 8)

Question :The factors of 4y – 12y + 9 is:
(a) (2y + 3)2
(b) (2y – 3)2
(c) (2y – 3)(2y + 3)
(d) None of the above

Show Answer :

Answer : (b) (2y-3)2
Hint:
4y – 12y + 9
4y2 = (2y)2 & 9 = 32 & 12y = 2.3.2y
4y – 12y + 9 = (2y)2 – 2 × 3 × (2y) + (3)2
= (2y – 3)2 [By algebraic identities: (a-(b)2 = a2+b2-2ab

Question :The factors of 49p2 – 36 are:
(a) (7p + 6)2
(b) (7p – 6)2
(c) (7p – 6 ) ( 7p + 6)
(d) None of the above

Show Answer :

Answer : (c) (7p – 6 ) ( 7p + 6)
Hint:
49p2 – 36 = (7p)2 – ( 6 )2 = (7p – 6 ) ( 7p + 6)

Question :The factors of m2 – 256 are:
(a) (m + 4)2
(b) (m – 4)2
(c) (m – 4) (m+4)
(d) None of the above

Show Answer :

Answer : (d) None of the above
Hint:
m4 = (m2)2 and 256 = (16)2
m4 – 256 = (m2)2 – (16)2 = (m2 – 16) (m2 + 16)
m2 – 16 = m2 – 42 = (m – 4) (m + 4)
m – 256 = (m – 4) (m + 4) (m2 + 16)

Question :When we factorise x2 + 5x + 6, then we get:
(a) (x + 2) (x + 3)
(b) (x – 2) (x – 3)
(c) (x × 2) + (x × 3)
(d) (x × 2) – (x × 3)

Show Answer :

Answer : (a) (x + 2) (x + 3)
Hint:
The factors of a form:
(x + (a) (x + (b) = x2 + (a + (b) x + ab
x2 + 5x + 6
a + b = 5 and ab = 6
x2 + 5x+6 = (x + 2) (x + 3)

Question :The factors of 3m2 + 9m + 6 are:
(a) (m + 1) (m + 2)
(b) 3(m + 1) (m + 2)
(c) 6(m + 1) (m + 2)
(d) 9(m + 1) (m + 2)

Show Answer :

Answer : (b) 3(m + 1) (m + 2)
Hint:
3m2 + 9m + 6 = 3(m2 + 3m + 2)
= 3 [m2 + m + 2m + 2]
= 3 [m(m + 1)+ 2( m + 1)]
= 3 [(m + 1) (m + 2)]

Question : Factorise: x²+xy+ 8x+ 8y
(a) (x + 8) (x + y)
(b) (x + y)
(c) (x + 8)
(d) (x + 9) (x – y)

Show Answer :

Answer :(a) (x + 8) (x + y)

Question : The common factor 12y and 30 is
(a) 6
(b) 12
(c) 30
(d) 6y.

Show Answer :

Answer :(a) 6

Question : The factorisation of 10x² – 18x³ + 14x4 is
(a) 2x³ (7x² – 9x + 5)
(b) 2x (7x² – 9x + 5)
(c) 2x² (7x² – 9x + 5)
(d) 2(7x² – 9x + 5)

Show Answer :

Answer :(c) 2x² (7x² – 9x + 5)

Question : Find the common factors of 2y, 22xy.
(a) 2y
(b) 2
(c) 22
(d) y

Show Answer :

Answer :(a) 2y

Question : Which of the following is quotient obtained on dividing –18 xyz² by –3 xz?
(a) 6 yz
(b) –6 yz
(c) 6 xy2
(d) 6 xy

Show Answer :

Answer :(a) 6 yz

Question :The common factor of x³y² and x4y is
(a) x4³y²
(b) x4y
(c) x³y²
(d) x³y.

Show Answer :

Answer :(d) x³y.

Question : The common factor of 6a²b4c², 21a²b and 15a³ is
(a) 3a³
(b) 6a³
(c) 6a²
(d) 3a²

Show Answer :

Answer :(d) 3a²

Question : Divide as directed: 26xy (x + 5) (y – 4) ÷ 13x (y – 4)
(a) 2y (x + 5)
(b) (x + 5)
(c) 2y
(d) None of these

Show Answer :

Answer :(a) 2y (x + 5)

Question : Amrit and Pankaj expanded (x−5)². Amrit’s answer is x²−25 and Pankaj’s answer is x²−10x+25. Which is correct?
(a) Amrit’s answer is correct.
(b) Pankaj’s answer is wrong.
(c) Both got correct answer.
(d) Pankaj’s answer is correct.

Show Answer :

Answer :(d) Pankaj’s answer is correct.

Question : The common factor of 10ab, 30bc, 50ca is
(a) 10
(b) 30
(c) 50
(d) abc.

Show Answer :

Answer :(a) 10

Question : The factorisation of x²yz + xy²z + xyz² is
(a) xyz(x + y + z)
(b) x²yz (x + y + z)
(c) xy²z (x + y + z)
(d) xyz² (x + y + z)

Show Answer :

Answer :(a) xyz(x + y + z)

Question : Solve: –20(x)4 ÷ 10(x)²
(a) 1/2x
(b) x
(c) 1/2
(d) -2x²

Show Answer :

Answer :(d) -2x²

Question : How many factors does (x9−x) have?
(a) 5
(b) 4
(c) 2
(d) 9

Show Answer :

Answer :(a) 5

Question : If x² – x – 42 = (x + k) (x + 6) then k =
(a) 6
(b) -6
(c) -7
(d) 7

Show Answer :

Answer :(c) -7

Question : Divide as directed: 52pqr (p + q) (q + r) (r + p) ÷104pq (q + r) (r + p)
(a) r(p+q)
(b) 1/2 r(p+q)
(c) 1/2
(d) none of these

Show Answer :

Answer :(d) 1/2 r(p+q)

Question : Choose the factors of 15x²−26x+8 from the following.
(a) (3x−4),(5x+2)
(b) (3x−4),(5x−2)
(c) (3x+4),(5x−2)
(d) (3x+4),(5x+2)

Show Answer :

Answer :(d) (3x−4),(5x−2)

Question : The common factor of 6a³b4c², 21a²b and 15a³ is
(a) 3a²
(b) 3a³
(c) 6a³
(d) 6a²

Show Answer :

Answer :(a) 3a²

Question : Which ofthe following is the common factor of 21 x²y and 35 xy²?
(a) 7
(b) xy
(c) 7 xy
(d) none of these

Show Answer :

Answer :(c) 7 xy

Question : Factorize x² + 8x + 12
(a) (x + 2)(x + 6)
(b) (x + 3)(x + 4)
(c) 3x + 12
(d) 3x – 12

Show Answer :

Answer :(a) (x + 2)(x + 6)

Question : Divide as directed: 26xy (x + 5) (y – 4) ÷ 13x (y – 4)
(a) 2y (x + 5)
(b) (x + 5)
(c) 2y
(d) None of these

Show Answer :

Answer :(a) 2y (x + 5)

Question : The factorisation of 12a²b + 15ab² is
(a) 3ab (4a + 5b)
(b) 3a²b (4a + 5b)
(c) 3ab² (4a + 5b)
(d) 3a²b² (4a + 5b).

Show Answer :

Answer :(a) 3ab (4a + 5b)

Question :Which of the following is quotient obtained on dividing –18 xyz² by –3 xz?
(a) 6 yz
(b) –6 yz
(c) 6 xy2
(d) 6 xy

Show Answer :

Answer :(a) 6 yz

Question :Factorise: 4y2 −12y + 9
(a) (7y− 5)2
(b) (5y− 3)2
(c) (2y− 5)2
(d) (2y− 3)2

Show Answer :

Answer : (d) (2y− 3)2

Question :Factorise 6xy – 4y + 6 – 9x.
(a) (3x – 2) (2y – 3)
(b) (3x – 2)
(c) (2y – 3)
(d) (2x – 3) (3y – 2)

Show Answer :

Answer : (a) (3x – 2) (2y – 3)

Question :Which of the following is quotient obtained on dividing –18 xyz2 by –3 xz?
(a) 6 yz
(b) –6 yz
(c) 6 xy2
(d) 6 xy

Show Answer :

Answer : (a) 6 yz

Question :Factorize x2 + 8x + 12
(a) (x + 2)(x + 6)
(b) (x + 3)(x + 4)
(c) 3x + 12
(d) 3x – 12

Show Answer :

Answer : (a) (x + 2)(x + 6)

Question :Factorise: x2+xy+ 8x+ 8y
(a) (x + 8) (x + y)
(b) (x + y)
(c) (x + 8)
(d) (x + 9) (x – y)

Show Answer :

Answer : (a) (x + 8) (x + y)

Question :Find and correct the errors in the following mathematical statements. x (3x + 2) = 3x2 + 2
(a) x (3x + 2) = 3x2 + 2x
(b) x (3x + 2) = 3x2
(c) x(3x + 2) = 5x2+ 2x
(d) none of these

Show Answer :

Answer : (a) x (3x + 2) = 3x2 + 2x

Question :Find the common factors of 2y, 22xy.
(a) 2y
(b) 2
(c) 22
(d) y

Show Answer :

Answer : (a) 2y

Question :Divide as directed: 5 (2x + 1) (3x + 5) ÷ (2x + 1)
(a) 5 (3x + 5)
(b) (3x + 5)
(c) 5
(d) none of these

Show Answer :

Answer : (a) 5 (3x + 5)

Question :The common factor of a2m4 and a4m2 is
(a) a4m4
(b) a2m2
(c) a2m4
(d) a4m2

Show Answer :

Answer : (b) a2m2

Question :Amrit and Pankaj expanded (x−5)2. Amrit’s answer is x2−25 and Pankaj’s answer is x2−10x+25. Which of the following statements is correct?
(a) Amrit’s answer is correct.
(b) Pankaj’s answer is wrong.
(c) Both got correct answer.
(d) Pankaj’s answer is correct.

Show Answer :

Answer : (d) Pankaj’s answer is correct.

Question :When we factorise an expression, we write it as a ________ of factors.
(a) product
(b) difference
(c) sum
(d) none of these

Show Answer :

Answer : (a) product

Question :Divide the given polynomial by the given monomial: (5x2− 6x) ÷ 3x
(a) (5x – 6)
(b) 13
(c) 13(5x – 6)
(d) none of these

Show Answer :

Answer : (c) 13(5x – 6)

Question :How many factors does (x9−x) have?
(a) 5
(b) 4
(c) 2
(d) 9

Show Answer :

Answer : (a) 5

Question :What are the factors of x2+xy−2xz−2yz?
(a) (x−y) and (x+2z)
(b) (x+y) and (x−2z)
(c) (x−y)and (x−2z)
(d) (x+y) and (x+2z)

Show Answer :

Answer : (b) (x+y) and (x−2z)

Question :Divide as directed: 52pqr (p + q) (q + r) (r + p) ÷104pq (q + r) (r + p)
(a) r(p+q)
(b) 12 r(p+q)
(c) 12
(d) none of these

Show Answer :

Answer : (b) 12 r(p+q)

Question :Choose the factors of 15x2−26x+8 from the following.
(a) (3x−4),(5x+2)
(b) (3x−4),(5x−2)
(c) (3x+4),(5x−2)
(d) (3x+4),(5x+2)

Show Answer :

Answer : (b) (3x−4),(5x−2)

Question :Solve: –20(x)4 ÷ 10(x)2
(a) 12x
(b) x
(c) 12
(d) -2x2

Show Answer :

Answer : (d) -2x2

Question :Divide as directed: 26xy (x + 5) (y – 4) ÷ 13x (y – 4)
(a) 2y (x + 5)
(b) (x + 5)
(c) 2y
(d) None of these

Show Answer :

Answer : (a) 2y (x + 5)

Question : The factorisation of 12a2b+15ab2 gives:
(a) 3ab(4ab+5)
(b) 3ab(4a+5b)
(c) 3a(4a+5b)
(d) 3b(4a + 5b)

Show Answer :

Answer :B
Explanation: 12a2b+15ab2
12a2b = 3 x 4 x a x a x b
15ab2 = 3 x 5 x a x b x b
The common factors are 3ab.
12a2b+15ab2 = 3ab(4a+5b)

Question : The factorisation of 12x+36 is
(a) 12(x+3)
(b) 12(3x)
(c) 12(3x+1)
(d) x(12+36x)

Show Answer :

Answer :A
Explanation: 12x + 36
12 x + 12 . 3
=12(x+3)

Question : On factorising 14pq + 35pqr, we get:
(a) pq(14+35r)
(b) p(14q+35qr)
(c) q(14p+35pr)
(d) 7pq(2+5r)

Show Answer :

Answer 😀
Explanation: 14pq + 35pqr
= 2.7.p.q + 5.7.p.q.r
= 7pq(2+5r)

Question : The factors of 6xy – 4y + 6 – 9x are:
(a) (3x + 2) (2y + 3)
(b) (3x – 2) (2y – 3)
(c) (3x – 2) (2y + 3)
(d) (3x –+2) (2y – 3)

Show Answer :

Answer :B
Explanation: 6xy – 4y + 6 – 9x
= 6xy – 4y – 9x + 6
= 2y (3x – 2) – 3 (3x – 2)
= (3x – 2) (2y – 3)

Question : The factors of x2+xy+8x+8y are:
(a) (x+y) (x+8)
(b) (2x+y) (x+8)
(c) (x+2y) (x+8)
(d) (x+y) (2x+8)

Show Answer :

Answer : A
Explanation: x2+xy+8x+8y
= x(x+y)+8(x+y)
=(x+y)(x+8)

Question : The factors of 4y2 – 12y + 9 is:
(a) (2y+3)2
(b) (2y-3)2
(c) (2y-3)(2y+3)
(d) None of the above

Show Answer :

Answer :B
Explanation: 4y2 – 12y + 9
4y2 = (2y)2 & 9 = 32 & 12y = 2.3.2y
4y2 – 12y + 9 = (2y)2 – 2 × 3 × (2y) + (3)2
= (2y – 3)2 [By algebraic identities: (a-b)2 = a2+b2-2ab

Question : The factors of 49p2 – 36 are:
(a) (7p+6)2
(b) (7p-6)2
(c) (7p – 6 ) ( 7p + 6)
(d) None of the above

Show Answer :

Answer :C
Explanation: 49p2 – 36 = (7p)2 – ( 6 )2 = (7p – 6 ) ( 7p + 6)

Question : The factors of m2 – 256 are:
(a) (m + 4)2
(b) (m – 4)2
(c) (m – 4) (m+4)
(d) None of the above

Show Answer :

Answer 😀
Explanation: m2 = (m)2 and 256 = (16)2
By using the algebraic identity, a2-b2 = (a+b).(a-b), we get (m+16).(m-16).

Question : When we factorise x2+5x+6, then we get:
(a) (x +2) (x + 3)
(b) (x – 2) (x – 3)
(c) (x × 2) + (x × 3)
(d) (x × 2) – (x × 3)

Show Answer :

Answer :A
Explanation: The factors of a form:
(x + a) (x + b) = x2 + (a + b) x + ab
x2+5x+6
a+b = 5 and ab = 6
x2+5x+6 = (x +2) (x + 3)

Question : The factors of 3m2 + 9m + 6 are:
(a) (m + 1) (m + 2)
(b) 3(m + 1) (m + 2)
(c) 6(m + 1) (m + 2)
(d) 9(m + 1) (m + 2)

Show Answer :

Answer :B
Explanation: 3m2 + 9m + 6 = 3(m2 + 3m + 2)
= 3 [m2 + m + 2m + 2]
= 3 [m(m + 1)+ 2( m + 1)]
= 3 [(m + 1) (m + 2)]

Question : The common factor of a3b3 and ab2 is:
(a) a2b2
(b) ab2
(c) a2b
(d) ab

Show Answer :

Answer : B. ab2
a3b3 = a x a x a x b x b x b
ab2 = a x b x b
The common factors are: a × b × b = ab2

Question : The common factor of a3b2 and a4b is:
(a) a4b2
(b) a4b
(c) a3b2
(d) a3b

Show Answer :

Answer : D. a3b
Explanation: Same as question no.11

Question : The common factor 12a and 30 is:
(a)6
(b) 12
(c) 30
(d) 6a

Show Answer :

Answer : A. 6
12a = 2 x 2 x 3 x a
30 = 2 x 3 x 5

Question : The common factors of 10a, 20b and 30c are:
(a) ab
(b) ac
(c) 10abc
(d) 10

Show Answer :

Answer : 10
10a = 2 x 5 x a
20b = 2 x 2 x 5 x b
30c = 2 x 3 x 5 x c

Question : The common factor of 6x3y4z2, 21x2y and 15x3 is:
(a) 3x2
(b) 3x3
(c) 6x3
(d) 6x2

Show Answer :

Answer : A. 3x2
Explanation: Same as question number 14.

Question : The common factor of 24a3b4, 36a4c4 and 48a3b2c is:
(a) 12a3
(b) 24a3
(c) 36a3
(d) 48a3

Show Answer :

Answer : A. 12a3
Explanation:
24a³b4 = 2 × 2 × 2 × 3 × a × a × a × b × b × b × b
36a4c4 = 2 × 2 × 3 × 3 × a × a × a × a × c × c × c × c
48a3b2c = 2 × 2 × 2 × 2 × 3 × a × a × a × b × b × c

Question : The factorisation of 12x2y + 15xy2 is:
(a) 3xy2 (4x + 5y)
(b) 3x2y (4x + 5y)
(c) 3xy (4x + 5y)
(d) 3x2y2 (4x + 5x)

Show Answer :

Answer : C. 3xy (4x + 5y)
12x2y + 15xy2 = 3xy (4x + 5y)

Question : The factorisation of 5x – 20 is:
(a) 5(x-5)
(b) 5(x-4)
(c) 5(x-3)
(d) 5(x-20)

Show Answer :

Answer : B. 5(x-4)
Explanation: 5x – 20 = 5 (x – 4)

Question : The factorisation of 8x + 4y is:
(a) 8(x+4y)
(b) 4(2x+4y)
(c) 8(x+y)
(d) 4(2x+y)

Show Answer :

Answer : D. 4(2x + y)

Question : The factors of xyz are:
(a) x
(b) y
(c) z
(d) All of the above

Show Answer :

Answer : D.
x, y and z are all the factors of xyz.

CBSE Class 8 Mathematics MCQ Direct and Inverse Proportions with Answers
Rational Numbers : Exercise – 1.1Comparing Quantities : Exercise – 8.1
Rational Numbers : Exercise – 1.2Comparing Quantities : Exercise – 8.2
Linear Equations in One Variable : Exercise – 2.1Comparing Quantities : Exercise – 8.3
Linear Equations in One Variable : Exercise – 2.2Algebraic Expressions and Identities : Exercise –  9.1
Linear Equations in One Variable : Exercise – 2.3Algebraic Expressions and Identities : Exercise –  9.2
Linear Equations in One Variable : Exercise – 2.4Algebraic Expressions and Identities : Exercise –  9.3
Linear Equations in One Variable : Exercise – 2.5Algebraic Expressions and Identities : Exercise –  9.4
Linear Equations in One Variable : Exercise – 2.6Algebraic Expressions and Identities : Exercise –  9.5
Understanding Quadrilaterals : Exercise – 3.1Visualising Solid Shapes : Exercise –  10.1
Understanding Quadrilaterals : Exercise – 3.2Visualising Solid Shapes : Exercise –  10.2
Understanding Quadrilaterals : Exercise – 3.3Mensuration : Exercise –  11.1
Understanding Quadrilaterals : Exercise – 3.4Mensuration : Exercise –  11.2
Practical Geometry : Exercise – 4.1Mensuration : Exercise –  11.3
Practical Geometry : Exercise – 4.2Mensuration : Exercise –  11.4
Practical Geometry : Exercise – 4.3Exponents and Powers : Exercise –  12.1
Practical Geometry : Exercise – 4.4Exponents and Powers : Exercise –  12.2
Practical Geometry : Exercise – 4.5Direct and Inverse Proportions : Exercise –  13.1
Data Handling : Exercise – 5.1Direct and Inverse Proportions : Exercise –  13.2
Data Handling : Exercise – 5.2Factorisation : Exercise –  14.1
Data Handling : Exercise – 5.3Factorisation : Exercise –  14.2
Squares and Square Roots : Exercise – 6.1Factorisation : Exercise –  14.3
Squares and Square Roots : Exercise – 6.2Factorisation : Exercise –  14.4
Squares and Square Roots : Exercise – 6.3Introduction to Graphs : Exercise –  15.1
Squares and Square Roots : Exercise – 6.4Introduction to Graphs : Exercise –  15.2
Cubes and Cube Roots : Exercise – 7.1Introduction to Graphs : Exercise –  15.3
Cubes and Cube Roots : Exercise – 7.2Playing with Numbers : Exercise –  16.1
 Playing with Numbers : Exercise –  16.2
CBSE Class 8 Mathematics MCQ Exponents and Powers with Answers
MCQ Questions Mechanical Engineering Hydraulic Machines

Related Posts

Leave a Reply